This work describes viability and distribution of INS-1E beta cells in shell-crosslinked alginate capsules, focussing on cells located near the capsule surface. Capsules were formed by air-shearing alginate suspensions of INS-1E cells into a gelling bath, and coating with poly-l-lysine (PLL) and 50% hydrolysed poly(methylvinylether-alt-maleic anhydride) to form crosslinked networks reinforcing the capsule surfaces. The percentage of cells at the capsule surface were determined using 2D and 3D confocal colocalization mapping.
View Article and Find Full Text PDFThe Diels-Alder [4 + 2] cycloaddition between furan- and maleimide-functional polyanions was used to form cross-linked synthetic polymer hydrogels. Poly(methyl vinyl ether-alt-maleic anhydride) was reacted with furfurylamine or N-(2-aminoethyl)maleimide in acetonitrile to form pairs of furan- and maleimide-functionalized poly(methyl vinyl ether-alt-maleic acid)s. Mixtures of these mutually reactive polyanions in water gelled within 15 min to 18 h, depending on degree of functionalization and polymer concentrations.
View Article and Find Full Text PDFA series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels.
View Article and Find Full Text PDFThis article describes the formation of cross-linked 10-200-nm-thick polymer hydrogel films by alternating the spin-coating of two mutually reactive polymers from organic solutions, followed by hydrolysis of the resulting multilayer film in aqueous buffer. Poly(methyl vinyl ether-alt-maleic anhydride) (PMM) was deposited from acetonitrile solution, and poly(N-3-aminopropylmethacrylamide-co-N-2-hydroxypropylmethacrylamide) (PAPMx, where x corresponds to the 3-aminopropylmethacrylamide content ranging from 10 to 100%) was deposited from methanol. Multilayer films were formed in up to 20 deposition cycles.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2013
Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2012
Polyanions based on poly(methyl vinyl ether-alt-maleic acid) were investigated as materials for cell encapsulation. These water-soluble polyanions having molecular masses ranging from 20 to 1980 kDa were prepared by functionalization of poly(methyl vinyl ether-alt-maleic anhydride) with 5-aminofluorescein and/or α-methoxy-ω-amino-poly(ethylene glycol), followed by base hydrolysis of the residual anhydride groups to form the corresponding poly(methyl vinyl ether-alt-sodium maleate). Their potential to replace alginate both in the core and, in particular, the outer shell of calcium alginate-poly(L-lysine)-alginate (APA) capsules was determined using confocal fluorescence microscopy, osmotic pressure tests, permeability studies, protein binding and cell viability assays.
View Article and Find Full Text PDFPoly(methyl vinyl ether-alt-maleic anhydride) (PMM(0)) was partially hydrolyzed in a 9/1 acetonitrile-d(3)/D(2)O mixture and then diluted with an aqueous buffer and coated onto poly-L-lysine (PLL)-coated calcium alginate capsules. The resulting 50% hydrolyzed polymer (PMM(50)) is bound to the surface-immobilized PLL through both electrostatic and covalent interactions, resulting in a shell-cross-linked hydrogel capsule that is resistant to chemical challenges. Further hydrolysis of PMM(50) in aqueous buffer was monitored by potentiometry and was found to proceed with a half-life time of about 2.
View Article and Find Full Text PDFSelf-cross-linkable polyelectrolyte pairs comprised of poly(methacrylic acid, sodium salt-co-2-[methacryloyloxy]ethyl acetoacetate) (70:30 mol ratio, A70) and poly-L-lysine are incorporated into CaAlg beads to form either a covalently cross-linked shell or a core-cross-linked bead. In both cases the reactive polyanion is added to a solution of sodium alginate that may contain live cells and dropped into a calcium chloride gelling bath. Subsequent exposure to poly-L-lysine (15-30 kDa) leads to formation of a cross-linked shell, while exposure to lower molecular weight poly-L-lysine (4-15 kDa) leads to formation of an interpenetrating matrix of covalently cross-linked synthetic polymer within the CaAlg template.
View Article and Find Full Text PDFSelf-cross-linking polyelectrolytes are used to strengthen the surface of calcium alginate beads for cell encapsulation. Poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride), containing 30 mol % 2-aminoethyl methacrylate, and poly(sodium methacrylate), containing 30 mol % 2-(methacryloyloxy)ethyl acetoacetate, were prepared by radical polymerization. Sequential deposition of these polyelectrolytes on calcium alginate films or beads led to a shell consisting of a covalently cross-linked polyelectrolyte complex that resisted osmotic pressure changes as well as challenges with citrate and high ionic strength.
View Article and Find Full Text PDFModulation of the polymerization temperature in precipitation polymerizations was used to form onion-type polymer microspheres consisting of multiple nested layers. Specifically, the copolymerization of chloromethylstyrene and divinylbenzene-55 in acetonitrile, at temperatures ramping between 65 and 75 degrees C, led to monodisperse, cross-linked microspheres of about 10 mum diameter that have radial density profiles closely reflecting the thermal profiles used. This thermal imprinting is attributed to the copolymer formed being close to its theta point during the polymerization.
View Article and Find Full Text PDF