Publications by authors named "Nichola Charles"

Clinical infusion of haematopoietic stem and progenitor cells (HSPCs) is vital for restoration of haematopoietic function in many cancer patients. Previously, we have demonstrated an ability to mimic physiological cell trafficking in order to capture CD34-positive (CD34+) HSPCs using monolayers of the cell adhesion protein P-selectin in flow chambers. The current study aimed to determine if HSPCs could be captured directly from circulating blood in vivo.

View Article and Find Full Text PDF

Background: Enrichment and purification of hematopoietic stem and progenitor cells (HSPCs) is important in transplantation therapies for hematologic disorders and in basic stem cell research. Primitive CD34+ HSPCs have demonstrated stronger rolling adhesion on selectins than mature CD34- mononuclear cells (MNCs). We have exploited this differential rolling behavior to capture and purify HSPCs from bone marrow by perfusing MNCs through selectin-coated microtubes.

View Article and Find Full Text PDF

Hematopoietic stem cell therapy is used to treat both malignant and non-malignant diseases, and enrichment of the hematopoietic stem and progenitor cells (HSPCs) has the potential to reduce the likelihood of graft vs host disease or relapse, potentially fatal complications associated with the therapy. Current commercial HSPC isolation technologies rely solely on the CD34 surface marker, and while they have proven to be invaluable, they can be time-consuming with variable recoveries reported. We propose that selectin-mediated enrichment could prove to be a quick and effective method for recovering HSPCs from adult bone marrow (ABM) on the basis of differences in rolling velocities and independently of CD34 expression.

View Article and Find Full Text PDF

Enhanced oxygen delignification of softwood pulp samples (taken upstream and downstream of a commercial oxygen delignification unit) improved the initial rate of enzymatic saccharification and overall yield of monomeric sugars by 62-82% and 76-80%, respectively. Laboratory-scale experiments were used to examine the effect of a broad range of operating parameters (temperature, time, caustic concentration, and oxygen partial pressure) on the effectiveness of oxygen delignification. Using empirical models, kappa number (residual lignin content) was found to effectively predict final conversion to monomeric sugars.

View Article and Find Full Text PDF