Background: Measurement of pathogen DNA polymerase activity by enzymatic template generation and amplification (ETGA) has shown promise in detecting pathogens in bloodstream infection (BSI). We perform an in-depth analysis of patients with clinical BSI enrolled in ETGA feasibility experiments.
Methods: In addition to hospital blood cultures, 1 study aerobic culture bottle was drawn from patients with suspected BSI.
Background: Transfusion of bacterially contaminated platelet concentrates (PCs) can result in serious health consequences for the affected patient. Before being released from blood banking facilities, PCs are routinely screened for bacterial contamination by culture-based tests. However, culture-based PC screening methods require extended holding and incubation periods and are prone to false-negative results due to sampling error.
View Article and Find Full Text PDFSurveillance of bloodstream infections (BSI) is a high priority within the hospital setting. Broth-based blood cultures are the current gold standard for detecting BSI, however they can require lengthy incubation periods prior to detection of positive samples. We set out to demonstrate the feasibility of using enzymatic template generation and amplification (ETGA)-mediated measurement of DNA polymerase activity to detect microbes from clinical blood cultures.
View Article and Find Full Text PDFBackground: Antimicrobial Susceptibility Testing (AST) is a methodology in which the sensitivity of a microorganism is determined via its inability to proliferate in the presence of an antimicrobial agent. Results are reported as minimum inhibitory concentrations (MICs). The present study demonstrates that measurement of DNA polymerase activity via Enzymatic Template Generation and Amplification (ETGA) can be used as a novel means of determining the MIC of a microbe to an antibiotic agent much sooner than the current standardized method.
View Article and Find Full Text PDFBloodstream infections (BSIs) caused by bacteria and fungi are associated with significant morbidity and mortality. Currently, blood culture is the gold standard for confirming a suspected BSI, but has the drawback of lengthy time-to-detection (TTD) required for indicating the presence of microbes. Detection of conserved microbial nucleic acid sequences within blood culture samples via PCR has been demonstrated to offer potential for reducing the TTD of BSI; however, these approaches have various other limitations.
View Article and Find Full Text PDFDuring the past 50 years, in vitro measurement of DNA polymerase activity has become an essential molecular biology tool. Traditional methods used to measure DNA polymerase activity in vitro are undesirable due to the usage of radionucleotides. Fluorescence-based DNA polymerase assays have been developed; however, they also suffer from various limitations.
View Article and Find Full Text PDF