Background: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats.
View Article and Find Full Text PDFNormothermic regional perfusion (NRP) allows assessment of therapeutic interventions prior to donation after circulatory death transplantation. Sodium-3-hydroxybutyrate (3-OHB) increases cardiac output in heart failure patients and diminishes ischemia-reperfusion injury, presumably by improving mitochondrial metabolism. We investigated effects of 3-OHB on cardiac and mitochondrial function in transplanted hearts and in cardiac organoids.
View Article and Find Full Text PDFBackground Mutations in gene encoding the Na,K-ATPase α isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown.
View Article and Find Full Text PDFBackground: Cardiac allograft vasculopathy (CAV) remains the Achilles' heel of long-term survival of HTx patients. Mitochondrial dysfunction has been reported in both arteriosclerotic coronary disease and heart failure. However, myocardial mitochondrial function has not been examined in HTx patients with CAV.
View Article and Find Full Text PDFMagn Reson Med
January 2022
Purpose: Hyperpolarized [1- C]pyruvate MRS can measure cardiac metabolism in vivo. We investigated whether [1- C]pyruvate MRS could predict left ventricular remodeling following myocardial infarction (MI), long-term left ventricular effects of heart failure medication, and could identify responders to treatment.
Methods: Thirty-five rats were scanned with hyperpolarized [1- C]pyruvate MRS 3 days after MI or sham surgery.
The Sodium Glucose Co-Transporter-2 inhibitor, empagliflozin (EMPA), reduces mortality and hospitalisation for heart failure following myocardial infarction irrespective of diabetes status. While the findings suggest an inherent cardioprotective capacity, the mechanism remains unknown. We studied infarct size (IS) ex-vivo in isolated hearts exposed to global IR injury and in-vivo in rats subjected to regional myocardial ischemia reperfusion (IR) injury, in whom we followed left ventricular dysfunction for 28 days.
View Article and Find Full Text PDFBackground: Remote ischemic conditioning (RIC) by brief periods of limb ischemia and reperfusion protects against ischemia-reperfusion injury. We studied the cardioprotective role of extracellular vesicles (EV)s released into the circulation after RIC and EV accumulation in injured myocardium.
Methods: We used plasma from healthy human volunteers before and after RIC (pre-PLA and post-PLA) to evaluate the transferability of RIC.
Inhibition of succinate dehydrogenase (SDH) by Dimethyl Malonate (DiMal) reduces cardiac ischemia-reperfusion (IR) injury. We investigated the cardioprotective effect of DiMal in a rat model during advancing type 2 diabetes. Zucker Diabetic Fatty rats and lean controls were investigated corresponding to prediabetes, onset and mature diabetes.
View Article and Find Full Text PDFA multitargeted strategy to treat the consequences of ischemia and reperfusion (IR) injury in acute myocardial infarction may add cardioprotection beyond reperfusion therapy alone. We investigated the cardioprotective effect of mild hypothermia combined with local ischemic preconditioning (IPC) or remote ischemic conditioning (RIC) on IR injury in isolated rat hearts. Moreover, we aimed to define the optimum timing of initiating hypothermia and evaluate underlying cardioprotective mechanisms.
View Article and Find Full Text PDFIntroduction: The average age of the diving population is rising, and the risk of atherosclerosis and cardiovascular disease in divers are accordingly increasing. It is an open question whether this risk is altered by diving . In this study, we examined the effect of 7-weeks simulated diving on endothelial function and mitochondrial respiration in atherosclerosis-prone rats.
View Article and Find Full Text PDFPLoS One
December 2020
Introduction: Aerobic capacity is a strong predictor of cardiovascular mortality. Whether aerobic capacity influences myocardial ischemia and reperfusion (IR) injury is unknown.
Purpose: To investigate the impact of intrinsic differences in aerobic capacity and the cardioprotective potential on IR injury.
Cardiovasc Drugs Ther
June 2021
Purpose: The glucose-lowering drug metformin has recently been shown to reduce myocardial oxygen consumption and increase myocardial efficiency in chronic heart failure (HF) patients without diabetes. However, it remains to be established whether these beneficial myocardial effects are associated with metformin-induced alterations in whole-body insulin sensitivity and substrate metabolism.
Methods: Eighteen HF patients with reduced ejection fraction and without diabetes (median age, 65 (interquartile range 55-68); ejection fraction 39 ± 6%; HbA1c 5.
Purpose: The mechanism of cardioprotection by Kv7.1-5 (KCNQ1-5) channels inhibition by XE991 is unclear. We examined the impact of administration time on the cardioprotective efficacy of XE991, the involvement of key pro-survival kinases, and the importance of the Kv7 subchannels.
View Article and Find Full Text PDFIschemia reperfusion (IR) injury may be attenuated through succinate dehydrogenase (SDH) inhibition by dimethyl malonate (DiMAL). Whether SDH inhibition yields protection in diabetic individuals and translates into human cardiac tissue remain unknown. In isolated perfused hearts from 24 weeks old male Zucker diabetic fatty (ZDF) and age matched non-diabetic control rats and atrial trabeculae from patients with and without diabetes, we compared infarct size, contractile force recovery and mitochondrial function.
View Article and Find Full Text PDFRemote ischemic conditioning (RIC) by repetitive brief periods of limb ischemia and reperfusion renders organs more resistant to ischemic injury. The protection is partly through down-regulation of the inflammatory response. Our aim was to investigate the clinical and anti-inflammatory effects of RIC in patients with active ulcerative colitis (UC).
View Article and Find Full Text PDFReducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI.
View Article and Find Full Text PDFWe investigated metabolic changes during brain death (BD) using hyperpolarized magnetic resonance (MR) spectroscopy and ex vivo graft glucose metabolism during normothermic isolated perfused kidney (IPK) machine perfusion. BD was induced in mechanically ventilated rats by inflation of an epidurally placed catheter; sham-operated rats served as controls. Hyperpolarized [1- C]pyruvate MR spectroscopy was performed to quantify pyruvate metabolism in the liver and kidneys at 3 time points during BD, preceded by injecting hyperpolarized[1- C]pyruvate.
View Article and Find Full Text PDFThe measurement of mitochondrial content is essential for bioenergetic research, as it provides a tool to evaluate whether changes in mitochondrial function are strictly due to changes in content or other mechanisms that influence function. In this perspective, we argue that commonly used biomarkers of mitochondrial content may possess limited utility for capturing changes in content with physiological intervention. Moreover, we argue that they may not provide reliable estimates of content in certain pathological situations.
View Article and Find Full Text PDFMitochondrial dysfunction has been implicated as a central mechanism in the metabolic myopathy accompanying critical limb ischemia (CLI). However, whether mitochondrial dysfunction is directly related to lower extremity ischemia and the structural and molecular mechanisms underpinning mitochondrial dysfunction in CLI patients is not understood. Here, we aimed to study whether mitochondrial dysfunction is a distinctive characteristic of CLI myopathy by assessing mitochondrial respiration in gastrocnemius muscle from 14 CLI patients (65.
View Article and Find Full Text PDFBackground: Patients with congestive heart failure (CHF) have impaired functional capacity and inferior quality of life. The clinical manifestations are associated with structural and functional impairments in skeletal muscle, emphasizing a need for feasible rehabilitation strategies beyond optimal anticongestive medical treatment. We investigated whether low-load blood flow restricted resistance exercise (BFRRE) or remote ischemic conditioning (RIC) could improve functional capacity and quality of life in patients with CHF and stimulate skeletal muscle myofibrillar and mitochondrial adaptations.
View Article and Find Full Text PDFBackground: The mechanisms underlying increased mortality in patients with diabetes and admission hyperglycemia after an acute coronary syndrome may involve reduced capacity for cardioprotection. We investigated the impact of hyperglycemia on exogenously activated cardioprotection by ischemic preconditioning (IPC) in hearts from rats with type 2 diabetes mellitus (T2DM) that were endogenously cardioprotected by an inherent mechanism, and the involvement of myocardial glucose uptake (MGU) and myocardial O-linked β-N-acetylglucosamine (O-GlcNAc).
Methods And Results: In isolated, perfused rat hearts subjected to ischemia-reperfusion, infarct size (IS) was overall larger during hyper- ([Glucose] = 22 mmol/L]) than normoglycemia ([Glucose] = 11 mmol/L]) (p < 0.
Background: Myocardial utilization of 3-hydroxybutyrate (3-OHB) is increased in patients with heart failure and reduced ejection fraction (HFrEF). However, the cardiovascular effects of increased circulating plasma-3-OHB levels in these patients are unknown. Consequently, the authors' aim was to modulate circulating 3-OHB levels in HFrEF patients and evaluate: (1) changes in cardiac output (CO); (2) a potential dose-response relationship between 3-OHB levels and CO; (3) the impact on myocardial external energy efficiency (MEE) and oxygen consumption (MVO); and (4) whether the cardiovascular response differed between HFrEF patients and age-matched volunteers.
View Article and Find Full Text PDFIt is well established that high-load resistance exercise (HLRE) can stimulate myofibrillar accretion. Additionally, recent studies suggest that HLRE can also stimulate mitochondrial biogenesis and respiratory function. However, in several clinical situations, the use of resistance exercise with high loading may not constitute a viable approach.
View Article and Find Full Text PDFRemote ischemic conditioning (RIC) protects against sustained myocardial ischemia. Because of overlapping mechanisms, this protection may be altered by glyceryl trinitrate (GTN), which is commonly used in the treatment of patients with chronic ischemic heart disease. We investigated whether long-term GTN treatment modifies the protection by RIC in the rat myocardium and human endothelium.
View Article and Find Full Text PDF