Evidences are escalating on the diverse neurological-disorders and asymptomatic cardiovascular-diseases associated with COVID-19 pandemic due to the Sanal-flow-choking. Herein, we established the proof of the concept of nanoscale Sanal-flow-choking in real-world fluid-flow systems using a closed-form-analytical-model. This mathematical-model is capable of predicting exactly the 3D-boundary-layer-blockage factor of nanoscale diabatic-fluid-flow systems (flow involves the transfer of heat) at the Sanal-flow-choking condition.
View Article and Find Full Text PDFGlob Chall
March 2021
The discovery of Sanal flow choking in the cardiovascular-system calls for multidisciplinary and global action to develop innovative treatments and to develop new drugs to negate the risk of asymptomatic-cardiovascular-diseases. Herein, it is shown that when blood-pressure-ratio (BPR) reaches the lower-critical-hemorrhage-index (LCHI) internal-flow-choking and shock wave generation can occur in the cardiovascular-system, with sudden expansion/divergence/vasospasm or bifurcation regions, without prejudice to the percutaneous-coronary-intervention (PCI). Analytical findings reveal that the relatively high and the low blood-viscosity are cardiovascular-risk factors.
View Article and Find Full Text PDFGlob Chall
September 2020
The discovery of Sanal flow choking is a scientific breakthrough and a paradigm shift in the diagnostics of the detonation/hemorrhage in real-world fluid flow systems. The closed-form analytical models capable of predicting the boundary-layer blockage factor for both 2D and 3D cases at the Sanal flow choking for adiabatic and diabatic fluid flow conditions are critically reviewed here. The beauty and novelty of these models stem from the veracity that at the Sanal flow choking condition for diabatic flows all the conservation laws of nature are satisfied at a unique location, which allows for computational fluid dynamics (CFD) code verification.
View Article and Find Full Text PDF