Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials.
View Article and Find Full Text PDFHexanucleotide repeat expansion in C9orf72 is one of the most common causes of amyotrophic lateral sclerosis and frontotemporal dementia. The hexanucleotide expansion, formed by GGGGCC (G4C2) repeats, leads to the production of five dipeptide protein repeats (DPRs) via repeat-associated non-AUG translation. Among the five dipeptide repeats, Gly-Arg, Pro-Arg, and Gly-Ala form neuronal inclusions that contain aggregates of the peptides.
View Article and Find Full Text PDFThe misfolding and aggregation of the tau protein into neurofibrillary tangles constitutes a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs.
View Article and Find Full Text PDFTau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection.
View Article and Find Full Text PDFThe pathological hallmark of many neurodegenerative diseases is the accumulation of characteristic proteinaceous aggregates. Parkinson's disease and dementia with Lewy bodies can be characterized as synucleinopathies due to the abnormal accumulation of the protein alpha-synuclein (α-Syn). Studies have shown amyloidogenic proteins such as α-Syn and tau can exist as polymorphic aggregates, a theory widely studied mostly in their fibrillar morphology.
View Article and Find Full Text PDFAmyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids.
View Article and Find Full Text PDFUbiquitin-modified tau aggregates are abundantly found in human brains diagnosed with Alzheimer's disease (AD) and other tauopathies. Soluble tau oligomers (TauO) are the most neurotoxic tau species that propagate pathology and elicit cognitive deficits, but whether ubiquitination contributes to tau formation and spreading is not fully understood. Here, we observed that K63-linked, but not K48-linked, ubiquitinated TauO accumulated at higher levels in AD brains compared with age-matched controls.
View Article and Find Full Text PDFThe microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass protective functions. This is the case of the Ca-binding S100B protein, an astrocytic alarmin which is augmented in AD and which has been recently implicated as a proteostasis regulator, acting over amyloid β aggregation.
View Article and Find Full Text PDFAging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD.
View Article and Find Full Text PDFOligomeric assemblies of tau and the RNA-binding proteins (RBPs) Musashi (MSI) are reported in Alzheimer's disease (AD). However, the role of MSI and tau interaction in their aggregation process and its effects are nor clearly known in neurodegenerative diseases. Here, we investigated the expression and cellular localization of MSI1 and MSI2 in the brains tissues of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as well as in the wild-type mice and tau knock-out and P301L tau mouse models.
View Article and Find Full Text PDFThe transcription factor, p53, is critical for many important cellular functions involved in genome integrity, including cell cycle control, DNA damage response, and apoptosis. Disruption of p53 results in a wide range of disorders including cancer, metabolic diseases, and neurodegenerative diseases. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregates that contribute to disease pathology.
View Article and Find Full Text PDFThe pathological aggregation of tau plays an important role in Alzheimer's disease and many other related neurodegenerative diseases, collectively referred to as tauopathies. Recent evidence has demonstrated that tau oligomers, small and soluble prefibrillar aggregates, are highly toxic due to their strong ability to seed tau misfolding and propagate the pathology seen across different neurodegenerative diseases. We previously showed that novel curcumin derivatives affect preformed tau oligomer aggregation pathways by promoting the formation of more aggregated and nontoxic tau aggregates.
View Article and Find Full Text PDFTau aggregates propagate in brain cells and transmit to neighboring cells as well as anatomically connected brain regions by prion-like mechanisms. Soluble tau aggregates (tau oligomers) are the most toxic species that initiate neurodegeneration in tauopathies, such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). Exogenous tau aggregates have been shown to be internalized by brain cells; however, the precise cellular and molecular mechanisms that underlie the internalization of tau oligomers (TauO) remain elusive.
View Article and Find Full Text PDFThe pathological hallmark of synucleinopathies, including Parkinson's disease (PD), is the aggregation of α-synuclein (α-Syn) protein. Even so, tau protein pathology is abundantly found in these diseases. Both α-Syn and tau can exist as polymorphic aggregates, a phenomenon that has been widely studied, mostly in their fibrillar assemblies.
View Article and Find Full Text PDFThe pathological aggregation and accumulation of tau, a microtubule-associated protein, is a common feature amongst more than 18 different neurodegenerative diseases that are collectively known as tauopathies. Recently, it has been demonstrated that the soluble and hydrophobic tau oligomers are highly toxic in vitro due to their capacity towards seeding tau misfolding, thereby propagating the tau pathology seen across different neurodegenerative diseases. Modulating the aggregation state of tau oligomers through the use of small molecules could be a useful therapeutic strategy to target their toxicity, regardless of other factors involved in their formation.
View Article and Find Full Text PDFMild traumatic brain injury accounts for the majority of head injuries and has been correlated with neurodegeneration and dementia. While repetitive mild traumatic brain injury is highly correlated to neurodegeneration, the correlation of a single mild traumatic brain injury with neurodegeneration is still unclear. Because tau aggregates are the main form of mild traumatic brain injury induced pathology, toxic forms of tau protein most likely play a role in the development of post-mild traumatic brain injury neurodegeneration.
View Article and Find Full Text PDFThe exact mechanisms leading to neurodegeneration in Alzheimer's disease (AD) and other tauopathies are not yet entirely understood. However, it is known that several RNA-binding proteins (RBPs) form toxic aggregates and also interact with tau in such granules in tauopathies, including AD. The Musashi (MSI) family of RBPs, consisting of two homologues: Musashi1 and Musashi2, have not been extensively investigated in neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimer's disease, a progressive neurodegenerative disease, affects learning and memory resulting from cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer's disease-like pathology and through alteration of cholinergic system. -benzylcinnamide (PT-3), purified from , has been shown to exhibit neuroprotective properties against amyloid-β-induced neuronal toxicity in rat cortical primary cell culture and to improve spatial learning and memory of aged rats through alleviating oxidative stress.
View Article and Find Full Text PDFNeurodegenerative disorders are characterized by chronic and progressive loss of neurons in structure and function related to aging, such as Alzheimer's disease, the latter characterized by the degeneration of cholinergic neurons in basal forebrain connected to the cerebral cortex and hippocampus. Amniotic fluid mesenchymal stem cells (AF-MSCs) have been proposed as one of the candidates for stem cell therapy of nervous system disorders. This study demonstrates that incubation of AF-MSCs, obtained from 16 to 20 week pregnant women, with 10ng/ml bone morphogenetic protein (BMP)-9 for 48h in conditioned medium resulted in transdifferentiation to cholinergic neuronal-like cells.
View Article and Find Full Text PDFThe pathogenesis of Alzheimer's disease involves an amyloid β-peptide (Aβ)-induced cascade of elevated oxidative damage and inflammation. The present study investigates the protective effects and the underlying mechanisms of N-benzylcinnamide (PT-3), purified from Piper submultinerve. Against Aβ-induced oxidative stress and inflammation in rat primary cortical cell cultures.
View Article and Find Full Text PDF