AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (1) tackle new tasks, like protein-ligand complex structure prediction, (2) investigate the process by which the model learns and (3) assess the model's capacity to generalize to unseen regions of fold space.
View Article and Find Full Text PDFProtein Eng Des Sel
January 2023
Self-supervised pretraining on protein sequences has led to state-of-the art performance on protein function and fitness prediction. However, sequence-only methods ignore the rich information contained in experimental and predicted protein structures. Meanwhile, inverse folding methods reconstruct a protein's amino-acid sequence given its structure, but do not take advantage of sequences that do not have known structures.
View Article and Find Full Text PDF