Publications by authors named "Niccolo Pancino"

Graph Neural Networks have proven to be very valuable models for the solution of a wide variety of problems on molecular graphs, as well as in many other research fields involving graph-structured data. Molecules are heterogeneous graphs composed of atoms of different species. Composite graph neural networks process heterogeneous graphs with multiple-state-updating networks, each one dedicated to a particular node type.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are fundamental processes governing cellular functions, crucial for understanding biological systems at the molecular level. Compared to experimental methods for PPI prediction and site identification, computational deep learning approaches represent an affordable and efficient solution to tackle these problems. Since protein structure can be summarized as a graph, graph neural networks (GNNs) represent the ideal deep learning architecture for the task.

View Article and Find Full Text PDF

Predicting drug side effects before they occur is a critical task for keeping the number of drug-related hospitalizations low and for improving drug discovery processes. Automatic predictors of side-effects generally are not able to process the structure of the drug, resulting in a loss of information. Graph neural networks have seen great success in recent years, thanks to their ability of exploiting the information conveyed by the graph structure and labels.

View Article and Find Full Text PDF

Drug Side-Effects (DSEs) have a high impact on public health, care system costs, and drug discovery processes. Predicting the probability of side-effects, before their occurrence, is fundamental to reduce this impact, in particular on drug discovery. Candidate molecules could be screened before undergoing clinical trials, reducing the costs in time, money, and health of the participants.

View Article and Find Full Text PDF