Publications by authors named "Nic Waddell"

Objectives: There is an urgent need to be able to identify individuals with asymptomatic infection, so their risk of progressing to VL and transmitting parasites can be managed. This study examined transcriptional markers expressed by CD4 T cells that could distinguish asymptomatic individuals from endemic controls and visceral leishmaniasis (VL) patients.

Methods: CD4 T cells were isolated from individuals with asymptomatic .

View Article and Find Full Text PDF

Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4 T cells from visceral leishmaniasis (VL) patients.

View Article and Find Full Text PDF

Genomic testing is rapidly moving into healthcare practice. However it comes with informatics challenges that the healthcare system has not previously faced - the raw data can be hundreds of gigabytes per test, the compute demands can be thousands of CPU hours, and the test can reveal deeply private health-srelated information that can have implications for anyone related to the person tested. While not a panacea, cloud computing has particular properties that can ameliorate some of these difficulties.

View Article and Find Full Text PDF

Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate.

View Article and Find Full Text PDF

Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-β-signaling-dependent conversion of NK cells (CD49aCD49bEomes) into intermediate type 1 innate lymphoid cell (intILC1) (CD49aCD49bEomes) populations and ILC1 (CD49aCD49bEomes) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance.

View Article and Find Full Text PDF

Background: While a number of studies have examined miRNA profiles across the molecular subtypes of breast cancer, it is unclear whether BRCA1 basal-like cancers have a specific miRNA profile. This study aims to compare grade independent miRNA expression in luminal cancers, sporadic and BRCA1 basal-type breast cancers. It also aims to ascertain an immunohistochemical profile regulated by BRCA1 specific miRNAs for potential diagnostic use.

View Article and Find Full Text PDF

Background: Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.

View Article and Find Full Text PDF

Background: Inherited predisposition to pancreatic cancer contributes significantly to its incidence and presents an opportunity for the development of early detection strategies. The genetic basis of predisposition remains unexplained in a high proportion of patients with familial PC (FPC).

Methods: Clinicopathologic features were assessed in a cohort of 766 patients who had been diagnosed with pancreatic ductal adenocarcinoma (PC).

View Article and Find Full Text PDF

Somatic rearrangements, which are commonly found in human cancer genomes, contribute to the progression and maintenance of cancers. Conventionally, the verification of somatic rearrangements comprises many manual steps and Sanger sequencing. This is labor intensive when verifying a large number of rearrangements in a large cohort.

View Article and Find Full Text PDF

The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity.

View Article and Find Full Text PDF

Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression.

View Article and Find Full Text PDF

Pathology archives contain vast resources of clinical material in the form of formalin-fixed paraffin-embedded (FFPE) tissue samples. Owing to the methods of tissue fixation and storage, the integrity of DNA and RNA available from FFPE tissue is compromized, which means obtaining informative data regarding epigenetic, genomic, and expression alterations can be challenging. Here, we have investigated the utility of repairing damaged DNA derived from FFPE tumors prior to single-nucleotide polymorphism (SNP) arrays for whole-genome DNA copy number analysis.

View Article and Find Full Text PDF

MicroRNAs are noncoding regulators of gene expression, which act by repressing protein translation and/or degrading mRNA. Many have been shown to drive tumorigenesis in cancer, but functional studies to understand their mode of action are typically limited to single-target genes. In this study, we use synthetic biotinylated miRNA to pull down endogenous targets of miR-182-5p.

View Article and Find Full Text PDF

Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour.

View Article and Find Full Text PDF

Mutations in the BRCA1 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron-exon boundaries, precluding the identification of mutations in noncoding and untranslated regions (UTR). As 3'UTR mutations can influence cancer susceptibility by altering protein and microRNA (miRNA) binding regions, we screened the BRCA1 3'UTR for mutations in a large series of BRCA-mutation negative, population and clinic-based breast cancer cases, and controls. Fifteen novel BRCA1 3'UTR variants were identified, the majority of which were unique to either cases or controls.

View Article and Find Full Text PDF

The progression of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) marks a critical step in the evolution of breast cancer. There is some evidence to suggest that dynamic interactions between the neoplastic cells and the tumour microenvironment play an important role. Using the whole-genome cDNA-mediated annealing, selection, extension and ligation assay (WG-DASL, Illumina), we performed gene expression profiling on 87 formalin-fixed paraffin-embedded (FFPE) samples from 17 patients consisting of matched IDC, DCIS and three types of stroma: IDC-S (<3 mm from IDC), DCIS-S (<3 mm from DCIS) and breast cancer associated-normal stroma (BC-NS; >10 mm from IDC or DCIS).

View Article and Find Full Text PDF

Background: Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product 1. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway.

View Article and Find Full Text PDF

Introduction: The RAD21 gene encodes a key component of the cohesin complex, which is essential for chromosome segregation, and together with BRCA1 and BRCA2, for high-fidelity DNA repair by homologous recombination. Although its expression correlates with early relapse and treatment resistance in sporadic breast cancers, it is unclear whether familial breast cancers behave in a similar manner.

Methods: We performed an immunohistochemical analysis of RAD21 expression in a cohort of 94 familial breast cancers (28 BRCA1, 27 BRCA2, and 39 BRCAX) and correlated these data with genotype and clinicopathologic parameters, including survival.

View Article and Find Full Text PDF

A characteristic of sporadic and familial breast tumours is genomic instability, resulting from either inherited mutations in genes that control genome integrity or mutations that are acquired in somatic cells during development. It is well established that abnormal chromosome number and structural changes to chromosomes play an important role in the cause and progression of breast cancer. Familial BRCA1 breast tumours are characterised by basal-like phenotype and high-histological grade which are typically associated with increased genomic instability.

View Article and Find Full Text PDF

Background: Variants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules.

Results: To assess the biological relevance of isomiRs, we have performed ultra-deep miRNA-seq on ten adult human tissues, and created an analysis pipeline called miRNA-MATE to align, annotate, and analyze miRNAs and their isomiRs.

View Article and Find Full Text PDF

The Protein Interaction Network Analysis (PINA) platform is a comprehensive web resource, which includes a database of unified protein-protein interaction data integrated from six manually curated public databases, and a set of built-in tools for network construction, filtering, analysis and visualization. The second version of PINA enhances its utility for studies of protein interactions at a network level, by including multiple collections of interaction modules identified by different clustering approaches from the whole network of protein interactions ('interactome') for six model organisms. All identified modules are fully annotated by enriched Gene Ontology terms, KEGG pathways, Pfam domains and the chemical and genetic perturbations collection from MSigDB.

View Article and Find Full Text PDF

Introduction: The seven in absentia homolog 2 (SIAH2) protein plays a significant role in the hypoxic response by regulating the abundance of hypoxia-inducible factor-α; however, its role in breast carcinoma is unclear. We investigated the frequency and expression pattern of SIAH2 in two independent cohorts of sporadic breast cancers.

Methods: Immunohistochemical evaluation of SIAH2protein expression was conducted in normal breast tissues and in tissue microarrays comprising ductal carcinoma in situ (DCIS) and a cohort of invasive breast carcinomas.

View Article and Find Full Text PDF

The development of next-generation sequencing technologies has enabled the transcriptome to be measured and characterized at a level which was previously unattainable. Shot gun sequencing of RNAs, or RNA-Seq as it is known, is providing the means to simultaneously survey locus activity, transcript-specific expression, sequence content of transcripts and transcriptome discovery. This article discusses the current state of RNA-Seq, its potential for redefining transcriptomics and some of the challenges associated with this revolutionary technology.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjjmg7lt561nf2clp5fqgdmbmtkphrk4t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once