The colloid cellular automata do not imitate the physical structure of colloids but are governed by logical functions derived from them. We analyze the space-time complexity of Boolean circuits derived from the electrical responses of colloids-specifically ZnO (zinc oxide, an inorganic compound also known as calamine or zinc white, which naturally occurs as the mineral zincite), proteinoids (microspheres and crystals of thermal abiotic proteins), and their combinations in response to electrical stimulation. To extract Boolean circuits from colloids, we send all possible configurations of two-, four-, and eight-bit binary strings, encoded as electrical potential values, to the colloids, record their responses, and infer the Boolean functions they implement.
View Article and Find Full Text PDFColloid-based computing devices offer remarkable fault tolerance and adaptability to varying environmental conditions due to their amorphous structure. An intriguing observation is that a colloidal suspension of ZnO nanoparticles in dimethylsulfoxide (DMSO) exhibits reconfiguration when exposed to electrical stimulation and produces spikes of electrical potential in response. This study presents a novel laboratory prototype of a ZnO colloidal computer, showcasing its capability to implement various Boolean functions featuring two, four and eight inputs.
View Article and Find Full Text PDFThis study investigated the effects of aerobic and anaerobic growth and proteolytic enzymes on the amino acid content of yeast hydrolysates in relation to taste and nutrition. Saccharomyces cerevisiae ATCC5574 was grown under fed-batch aerobic or batch anaerobic conditions. Intracellular glutamic acid (Glu) concentrations were 18-fold higher in aerobic yeast.
View Article and Find Full Text PDFLiving fungal mycelium networks are proven to have properties of memristors, capacitors and various sensors. To further progress our designs in fungal electronics we need to evaluate how electrical signals can be propagated through mycelium networks. We investigate the ability of mycelium-bound composites to convey electrical signals, thereby enabling the transmission of frequency-modulated information.
View Article and Find Full Text PDFLiving substrates are capable for nontrivial mappings of electrical signals due to the substrate nonlinear electrical characteristics. This property can be used to realise Boolean functions. Input logical values are represented by amplitude or frequency of electrical stimuli.
View Article and Find Full Text PDFBiosystems
February 2022