Publications by authors named "Nibedita Nandi"

A dipeptide-based synthetic amphiphile bearing a myristyl chain has been found to form hydrogels in the pH range 6.9-8.5 and organogels in various organic solvents including petroleum ether, diesel, kerosene, and petrol.

View Article and Find Full Text PDF

A histidine attached naphthalenediimide (NDI)-containing amphiphilic molecule (NDIP) self-assembles into nanotubes in aqueous solution at pH 6.6 as revealed by high-resolution transmission electron microscopy studies. This histidine-appended NDI forms a two-component hydrogel in the presence of tartaric acid at a molar ratio of 1 : 2.

View Article and Find Full Text PDF

A histidine-containing bola-amphiphilic molecule (NDIP) containing a peptide-appended naphthalenediimide (NDI) forms fluorescent hydrogels in phosphate buffer and organogels with benzenoid solvents. These gels were characterized by several spectroscopic and microscopic techniques including FT-IR, HR-TEM, powder X-ray diffraction and small-angle X-ray scattering, UV-Vis and fluorescence studies. The gelator molecule exhibits no significant fluorescence in the xerogel state, while it shows a significant fluorescence (bright cyan) in the presence of volatile organic/inorganic acid vapors; this cyan color vanishes in presence of base (ammonia vapors).

View Article and Find Full Text PDF

Two naphthalene diimide containing molecules, one with a covalently linked peptide (P1) and the other with a covalently attached amino acid residue and a diamine moiety (P2), have been chosen in such a way that the number of intervening amide groups and the centrally located imide moieties are the same, and their molecular formulae are also identical. However, the positions of the amide groups are different in these two molecules and this can dictate a different behaviour in molecular assembly and gelation processes for each of the individual NDI-appended peptide (P1) and pseudo-peptide (P2). The molecule P1 with an attached peptide moiety and the intervening -CO-NH groups forms an organogel in a mixture of chloroform-methylcyclohexane at a very rapid rate and the mechanical strength of the gel is quite high, whereas the molecule P2, containing the amino acid and diamide moieties, and with the intervening -NH-CO groups forms an organogel in a relatively much slower rate in chloroform-methylcyclohexane mixture.

View Article and Find Full Text PDF

This is a unique example of fluorescent carbon dot-induced hydrogelation of an amino acid-based amphiphile. The carbon dot-to-amphiphile ratio dictates the gel stiffness. Moreover, this hydrogel can be used as a prominent fluorescent ink and the dried gel shows a remarkable, unusual green fluorescence in the solid state.

View Article and Find Full Text PDF
Article Synopsis
  • This study showcases how a specific peptide, attached to naphthalene diimide (NDI), self-assembles into a fluorescent structure in water, displaying unusual yellow fluorescence.
  • The aggregated form has been thoroughly analyzed using various techniques, including TEM and UV-vis spectroscopy, revealing a distinct nanofibrillar structure with improved fluorescence longevity compared to its non-aggregated state.
  • Notably, the fluorescence can be toggled on and off based on pH changes, making it a potential candidate for security applications like rewritable color codes in information encryption.
View Article and Find Full Text PDF

A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g.

View Article and Find Full Text PDF

A series of peptides with a long fatty acyl chain covalently attached to the C-terminal part and a free amine (-NH) group at the N-terminus have been designed so that these molecules can be assembled in aqueous medium by using various noncovalent interactions. Five different peptide amphiphiles with a general chemical formula [HN-(CH)CONH-Phe-CONHC (n = 1-5, C = dodecylamine)] have been synthesized, characterized, and examined for self-assembly and hydrogelation. All of these molecules [P1 (n = 1), P2 (n = 2), P3 (n = 3), P4 (n = 4), P5 (n = 5)] form thermoresponsive hydrogels in water (pH 6.

View Article and Find Full Text PDF

A triphenylalanine-based superhydrogel shows automatic syneresis (self-compressing properties) with time and this self-shrinking behavior has been successfully utilized to remove toxic lead ions and organic dyes from waste-water efficiently with the ability to re-use for a few times.

View Article and Find Full Text PDF

Two-component fluorescent hydrogels have been discovered, containing the mixtures of naphthalene diimide (NDI)-conjugated peptide-functionalized bola-amphiphile and primary amines with long alkyl chains at physiological pH 7.46. The aggregation-induced enhanced emission associated with an NDI-appended peptide in aqueous medium is rare, as water is known to be a good quencher of fluorescence.

View Article and Find Full Text PDF

A short peptide-based molecule has been found to form a strong hydrogel at phosphate buffer solution of pH 7.46. The hydrogel has been characterized thoroughly using various techniques including field emission scanning electron microscopy (FE-SEM), wide angle powder X-ray diffraction (PXRD), and rheological analysis.

View Article and Find Full Text PDF

Fluorescence associated with J-aggregated naphthalenediimides (NDIs) is common. However, in this study an NDI based synthetic peptide molecule is found to form a fluorescent H-aggregate in a chloroform (CHCl3)-methylcyclohexane (MCH) mixture. An attempt has been made to explain the unusual fluorescence property of this H-aggregated NDI derivative.

View Article and Find Full Text PDF

A naphthalenediimide (NDI)-based new gelator molecule has been discovered, the molecule forms interesting J/H-aggregated species depending on solvents (aliphatic/aromatic) and remarkably, the fluorescence of the gel phase materials is nicely tuned according to the electron donating capacity of the aromatic solvent.

View Article and Find Full Text PDF

A pyridine containing amino acid based gelator forms gel in aqueous media in the presence of hydrochloric acid and the chloride ion is found to be very selective for gelation. The gelator is successfully applied for the detection and trapping of hydrogen chloride gas and this indicates its probable application for removing hazardous HCl gas from the environment.

View Article and Find Full Text PDF