Amyloid-beta-peptide (Abeta) deposits are one of the hallmark features of Alzheimer's disease. Signal transduction alterations are implicate in the neuronal responses to Abeta, which include neurotransmitter systems and pathways involved in the maintenance of the nervous system. In this context, we have recently found that Abeta-neurotoxicity triggers a loss of Wnt signaling.
View Article and Find Full Text PDFThe amyloid precursor protein (APP) contains a Cu binding domain (CuBD) localized between amino acids 135 and 156 (APP135-156), which can reduce Cu2+ to Cu1+ in vitro. The physiological function of this APP domain has not yet being established; nevertheless several studies support the notion that the CuBD of APP is involved in Cu homeostasis. We used APP synthetic peptides to evaluate their protective properties against Cu2+ neurotoxicity in a bilateral intra-hippocampal injection model.
View Article and Find Full Text PDFThe aim of this study was to evaluate whether the direct activation of the Wnt signaling pathway by its endogenous Wnt-3a ligand prevents the toxic effects induced by amyloid-beta-peptide (Abeta) in rat hippocampal neurons. We report herein that the Wnt-3a ligand was indeed able to overcome toxic effects induced by Abeta in hippocampal neurons, including a neuronal impairment on cell survival, an increase in glycogen synthase kinase-3beta (GSK-3beta) and tau phosphorylation, a decrease in cytoplasmic beta-catenin and a decrease in the expression of the Wnt target gene engrailed-1. We further demonstrate that Wnt-3a protects hippocampal neurons from apoptosis induced by Abeta.
View Article and Find Full Text PDFNeuropathological changes generated by human amyloid-beta peptide (Abeta) fibrils and Abeta-acetylcholinesterase (Abeta-AChE) complexes were compared in rat hippocampus in vivo. Results showed that Abeta-AChE complexes trigger a more dramatic response in situ than Abeta fibrils alone as characterized by the following features observed 8 weeks after treatment: 1). amyloid deposits were larger than those produced in the absence of AChE.
View Article and Find Full Text PDFThe specific localization of the asymmetric form of acetylcholinesterase (AChE) in neuromuscular junctions results from the interaction of its collagen-like tail with heparan sulfate proteoglycans in the synaptic basal lamina. This interaction involves two heparin binding consensus sequences of the form XBBXB, where B is a basic residue, located in the triple-helical collagen tail: GRKGR for the N-terminal site and GKRGK for the C-terminal site. To explore the basis of the higher heparin affinity seen for the C-terminal site vs.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) activities in CNS physiopathology are increasingly diverse and range from neuritogenesis, through synaptogenesis, to enhancement of amyloid fiber assembly. In Alzheimer's disease, senile plaques and neurodegeneration specially affect regions enriched for cholinergic synapses. In this study we show an effect of AChE that could contribute to the increased deposition of Abeta in certain regions.
View Article and Find Full Text PDFPrevious studies have demonstrated that acetylcholinesterase (AChE) promotes the assembly of amyloid-beta-peptides into neurotoxic amyloid fibrils and is toxic for chick retina neuronal cultures and neuroblastoma cells. Moreover, AChE is present in senile plaques in Alzheimer's disease (AD) brains. Here we have studied the effect of AChE on astrocytes and hippocampal neurons in vivo.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) are key transcription factors in the control of lipid homeostasis and cell differentiation, but little is known about their function in oligodendrocytes, the major lipid-synthesizing cells in the central nervous system (CNS). Using the B12 oligodendrocyte-like cell line and rat spinal cord-derived oligodendrocytes, we evaluated the importance of PPARgamma in the maturation process of these cells. B12 cells express all PPAR isoforms (alpha, beta/delta, and gamma), as assessed by RT-PCR, Western-blot, and transactivation assays.
View Article and Find Full Text PDFHuman prion protein fragments (PrP60-67 or PrP59-91) prevented and reversed the inhibition elicited by 5 micro m copper on the P2X4 receptor expressed in Xenopus laevis oocytes. A 60-s pre-application of 5 micro m copper caused a 69.2 +/- 2.
View Article and Find Full Text PDFColQ, the collagen tail subunit of asymmetric acetylcholinesterase, is responsible for anchoring the enzyme at the vertebrate synaptic basal lamina by interacting with heparan sulfate proteoglycans. To get insights about this function, the interaction of ColQ with heparin was analyzed. For this, heparin affinity chromatography of the complete oligomeric enzyme carrying different mutations in ColQ was performed.
View Article and Find Full Text PDFPeroxisome proliferator activated receptors (PPARs) are nuclear receptors that control important genes involved in lipid metabolism. Their role in nerve cells is uncertain, although anomalous myelination of the corpus callosum has been described in the PPARbeta-null mouse, and abnormalities of this tissue have been documented in fetal alcohol syndrome in humans. We report here that ethanol treatment of B12 oligodendrocyte-like cells induces a concentration- and time-dependent decrease in the mRNA and protein levels of PPARbeta, with no effect on PPARalpha or PPARgamma.
View Article and Find Full Text PDFIncreasing evidence supports an important role for metals in neurobiology. In fact, copper binding proteins that form bioinorganic complexes are able to display oxidant or anti-oxidant properties, which would impact on neuronal function or in the triggering of neurodegenerative process. Two proteins related to neurodegenerative diseases have been described as copper binding proteins: the amyloid precursor protein (APP), a protein related to Alzheimer's disease, and the Prion protein (PrP), related to Creutzfeldt-Jakob disease.
View Article and Find Full Text PDFCurrent evidence supports the notion that the amyloid beta-peptide (Abeta) plays a major role in the neurotoxicity observed in the brain in Alzheimer's disease. However, the signal transduction mechanisms involved still remain unknown. In the present work, we analyzed the effect of protein kinase C (PKC) on some members of the Wnt signaling pathway and its implications for Abeta neurotoxicity.
View Article and Find Full Text PDFBeta-amyloid (Abeta) 1-42, implicated in the pathogenesis of Alzheimer's disease, forms an oligomeric complex that binds copper at a CuZn superoxide dismutase-like binding site. Abeta.Cu complexes generate neurotoxic H(2)O(2) from O(2) through Cu(2+) reduction, but the reaction mechanism has been unclear.
View Article and Find Full Text PDFAmyloid deposition in Alzheimer fibrils forms neurotoxic senile plaques in a process that may be modulated by associated proteins. In this work we demonstrate the ability of laminin-1 and laminin-2 to inhibit fibril formation and toxicity on cultured rat hippocampal neurons. We confirm that the laminin-1-derived peptide YFQRYLI inhibits efficiently both fibril formation and neurotoxicity and show that the IKVAV peptide inhibits amyloid neurotoxicity despite its slight inhibition of fibril formation.
View Article and Find Full Text PDFAmyloid beta-peptide (Abeta) fibril deposition on cerebral vessels produces cerebral amyloid angiopathy that appears in the majority of Alzheimer's disease patients. An early onset of a cerebral amyloid angiopathy variant called hereditary cerebral hemorrhage with amyloidosis of the Dutch type is caused by a point mutation in Abeta yielding Abeta(Glu22-->Gln). The present study addresses the effect of amyloid fibrils from both wild-type and mutated Abeta on vascular cells, as well as the putative protective role of antioxidants on amyloid angiopathy.
View Article and Find Full Text PDF