Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA.
View Article and Find Full Text PDFDuring genome duplication, replication forks (RFs) can be stalled by different obstacles or by depletion of replication factors or nucleotides. A limited number of histone post-translational modifications at stalled RFs are involved in RF protection and restart. Provided the recent observation that the SIN3A histone deacetylase complex reduces transcription-replication conflicts, we explore the role of the SIN3A complex in protecting RFs under stressed conditions.
View Article and Find Full Text PDFGenome instability is a feature of cancer cells, transcription being an important source of DNA damage. This is in large part associated with R-loops, which hamper replication, especially at head-on transcription-replication conflicts (TRCs). Here we show that TRCs trigger a DNA Damage Response (DDR) involving the chromatin network to prevent genome instability.
View Article and Find Full Text PDFAccurate and complete genome duplication is crucial to maintain cell survival and prevent malignant transformation. The Fanconi anemia (FA) pathway has traditionally been associated with the repair of DNA interstrand crosslinks that impede the progression of the replication machinery. Recent studies demonstrate that FA proteins also regulate cell-cycle checkpoints and/or promote replication fork remodeling in response to multiple DNA impediments, and redefine the FA pathway as a fundamental mechanism to preserve genome integrity upon different insults.
View Article and Find Full Text PDFCutaneous apocrine carcinoma is an extreme rare malignancy derived from a sweat gland. Histologically sweat gland cancers resemble metastatic mammary apocrine carcinomas, but the genetic landscape remains poorly understood. Here, we report a rare metastatic case with a aberration identified previously as a familial susceptibility gene for breast cancer in the Finnish population.
View Article and Find Full Text PDF