Lung cancer is a frequently diagnosed respiratory disease caused by particulate matter in the environment, especially among older individuals. For its effective treatment, a promising approach involves administering drug particles through the inhalation route. Multiple studies have investigated the flow behavior of inhaled particles in the respiratory airways of healthy patients.
View Article and Find Full Text PDFRehabilitation is a major requirement to improve the quality of life and mobility of patients with disabilities. The use of rehabilitative devices without continuous supervision of medical experts is increasing manifold, mainly due to prolonged therapy costs and advancements in robotics. Due to ExoMechHand's inexpensive cost, high robustness, and efficacy for participants with median and ulnar neuropathies, we have recommended it as a rehabilitation tool in this study.
View Article and Find Full Text PDFIn this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This Riga plate creates an electric and magnetic field, where a transverse Lorentz force is generated that contributes to the flow along the plate. A new study field has been created by Sutterby nanofluid flows down the Riga plate, which is crucial to the creation of several industrial advancements, including thermal nuclear reactors, flow metres, and nuclear reactor design.
View Article and Find Full Text PDFBreath sensor technology can be used in medical diagnostics. This study aimed to build a device to measure the level of hydrogen sulfide, ammonia, acetone and alcohol in exhaled breath of patients as well as healthy individuals. The purpose was to determine the efficacy of these gases for detection of obstructive lung disease.
View Article and Find Full Text PDFThe linear complementarity approach has been utilized as a systematic and unified numerical process for determining the response of a rigid-plastic structure subjected to impulsive loading. However, the popular Lemke Algorithm for solving linear complementarity problems (LCP) encounters numerical instability issues whilst tracing the response of structures under extreme dynamic loading. This paper presents an efficient LCP approach with an enhanced initiation subroutine for resolving the numerical difficulties of the solver.
View Article and Find Full Text PDFFlow around circular cylinder has been extensively studied by researchers for several decades due to its wide range of engineering applications such as in heat exchangers, marine cables, high rise building, chimneys, and offshore structures. The lack of clear understanding of the unsteady flow dynamics in the wake of circular cylinder and high computational cost are still an area of high interest amongst the researchers. The aim of the current study is to investigate the effect of variation in spanwise length and grid resolution in the spanwise direction on the recirculation length, separation angle of wake flow by performing large eddy simulations (LES).
View Article and Find Full Text PDFBackground: Magnetohydrodynamics or hydro-magnetics (MHD) is the study of dynamics in the presence of magnetic characteristics and impact of electrically conducting liquids which has a significant applications in engineering and biomedical sciences. Liquid metals, plasma, electrolytes and salt water are the examples of such magneto-fluids. MHD liquid flow in various geometries significant to engineering sciences is an interesting and noteworthy scientific area because of applications.
View Article and Find Full Text PDFBackground: Mixed convection (forced+natural convection) is frequently observed in exceptionally high output devices where the forced convection isn't sufficient to dissipate all of the heat essential. At this point, consolidating natural convection with forced convection will frequently convey the ideal outcomes. Nuclear reactor technology and a few features of electronic cooling are the examples of these processes.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2019
Background And Objective: Nanoliquids are dilute suspensions of nanoparticles with at least one of their principal dimensions smaller than 100 nm. Form literature, nanoliquids have been found to possess increased thermos-physical characteristics like thermal diffusivity, thermal conductivity, convective heat transport coefficients and viscosity associated to those of continuous phase liquids foe example oil, ethylene glycol and water. Nanoliquids have novel characteristics that make them possibly beneficial in numerous applications in heat transport like fuel cells, microelectronics, hybrid-powered engines, pharmaceutical processes, domestic refrigerator, engine cooling thermal management, chiller and heat exchanger.
View Article and Find Full Text PDFThis paper investigated the seismic retrofitting of an existing cable-stayed bridge through the use of a seismic isolation system. The bridge is situated in a high seismic zone. During the Saguenay earthquake 1988, one of the anchorage plates of the bridge supports failed.
View Article and Find Full Text PDFThis study numerically investigates the vortex-induced vibration (VIV) of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re) = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models.
View Article and Find Full Text PDF