A platform for flyer plate benchmarking experiments has been developed, with an external X-pinch driver for point projection radiography. The experiments were performed using CEPAGE, a low inductance pulsed power machine at First Light Fusion (2 MA, 1.4 µs), with a new vacuum transmission line and flyer load hardware designed specifically to give a line of sight for radiography.
View Article and Find Full Text PDFThree-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 10^{4} T. Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%.
View Article and Find Full Text PDFWe present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields (B=3 T), advected by supersonic, sub-Alfvénic carbon plasma flows (V_{in}=50 km/s), are brought together and mutually annihilate inside a thin current layer (δ=0.6 mm).
View Article and Find Full Text PDFWe present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2013
The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2012
High-resolution laser probing diagnostics at a wavelength of 266 nm allow observation of the internal structure and instabilities in dense stagnated Z pinches, typically hidden by trailing material. The internal structure of the 1-MA Z pinch includes strong kink and sausage instabilities, loops, flares, and disruptions. Mid- and small-scale density perturbations develop in the precursor and main pinch.
View Article and Find Full Text PDFHigh-resolution laser diagnostics at the wavelength of 266 nm were applied for the investigation of Z pinches at the 1-MA generator. The internal structure of the stagnated Z pinches was observed in unprecedented detail. A dense pinch with strong instabilities was seen inside the column of the trailing plasma.
View Article and Find Full Text PDF