A kind of hybrid multilayer film based on mercaptobenzoic acid-capped Au nanoparticles (MBA-Au-NPs) and photoreactive nitrodiazoresin (NDR) has been fabricated via electrostatic self-assembly. Upon exposure to UV light, the initial ionic bonds between the layers of the film convert into covalent bonds and the film stability toward polar solvents, salt, or surfactant solutions increases significantly. The micropatterned NDR/MBA-Au-NP film with the covalently linked architecture was formed by selecting exposure of the film through a photomask and later developed in sodium dodecyl sulfate (SDS) aqueous solution.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2004
Micropatterned cross-linked film making up a temperature-responsive component has been fabricated through the following two steps: layer-by-layer electrostatic assembly of photosensitive nitrodiazoresin (NDR) and a thermosensitive copolymer of poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPA-AA)), and subsequent selective exposure to UV light through a photomask followed with development in sodium dodecyl sulfate (SDS) aqueous solution. The irradiated regions of the film are retained due to the formed covalently linked structure, whereas the unirradiated parts of the film are removed fully from the substrate in SDS solution. The well-defined micropatterns were characterized with field-emission scanning electron spectroscopy (FE-SEM) and atomic force microscopy (AFM).
View Article and Find Full Text PDFCovalently linked Au-NPs micropatterns have been successfully fabricated from the self-assembly film composed of 4-mercaptophenol-capped Au nanoparticles (Au-NPs) and -N2+ containing polymers of nitro-diazoresin (NDR) by selective exposure to UV light and development in sodium dodecyl sulfate (SDS) aqueous solution. The resultant well-defined micropatterns were characterized with AFM and XPS.
View Article and Find Full Text PDF