Endogenous bioelectrical signaling coordinates cell behaviors toward correct anatomical outcomes. Lack of a model explaining spatialized dynamics of bioelectric states has hindered the understanding of the etiology of some birth defects and the development of predictive interventions. Nicotine, a known neuroteratogen, induces serious defects in brain patterning and learning.
View Article and Find Full Text PDFLaterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning.
View Article and Find Full Text PDFHyperpolarization-activated cyclic-nucleotide gated channel (HCN) proteins are important regulators of both neuronal and cardiac excitability. Among the 4 HCN isoforms, HCN4 is known as a pacemaker channel, because it helps control the periodicity of contractions in vertebrate hearts. Although the physiological role of HCN4 channel has been studied in adult mammalian hearts, an earlier role during embryogenesis has not been clearly established.
View Article and Find Full Text PDFProtein structure prediction and modeling provide a tool for understanding protein functions by computationally constructing protein structures from amino acid sequences and analyzing them. With help from protein prediction tools and web servers, users can obtain the three-dimensional protein structure models and gain knowledge of functions from the proteins. In this chapter, we will provide several examples of such studies.
View Article and Find Full Text PDFBackground: Estrogen has been shown to mediate protection in female hearts against ischemia-reperfusion (I-R) stress. Composed by a Kir6.2 pore and an SUR2 regulatory subunit, cardiac ATP-sensitive potassium channels (KATP) remain quiescent under normal physiological conditions but they are activated by stress stimuli to confer protection to the heart.
View Article and Find Full Text PDFThe newborn heart adapts to postnatal life by shifting from a fetal glycolytic metabolism to a mitochondrial oxidative metabolism. Abcc9, an ATP-binding cassette family member, increases expression concomitant with this metabolic shift. Abcc9 encodes a membrane-associated receptor that partners with a potassium channel to become the major potassium-sensitive ATP channel in the heart.
View Article and Find Full Text PDFCardiac ATP-sensitive potassium channels (KATP) are found in both the sarcoplasmic reticulum (sarcKATP) and the inner membrane of mitochondria (mitoKATP). SarcKATP are composed of a pore containing subunit Kir6.2 and a regulatory sulfonylurea receptor subunit (SUR2), but the composition of mitoKATP remains unclear.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2010
The sulfonylurea receptor-2 (SUR2) is a subunit of ATP-sensitive potassium channels (K(ATP)) in heart. Mice with the SUR2 gene disrupted (SUR2m) are constitutively protected from ischemia-reperfusion (I/R) cardiac injury. This was surprising because K(ATP), either sarcolemmal or mitochondrial or both, are thought to be important for cardioprotection.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2010
Sulfonylurea receptor-containing ATP-sensitive potassium (K(ATP)) channels have been implicated in cardioprotection, but the cell type and constitution of channels responsible for this protection have not been clear. Mice deleted for the first nucleotide binding region of sulfonylurea receptor 2 (SUR2) are referred to as SUR2 null since they lack full-length SUR2 and glibenclamide-responsive K(ATP) channels in cardiac, skeletal, and smooth muscle. As previously reported, SUR2 null mice develop electrocardiographic changes of ST segment elevation that were shown to correlate with coronary artery vasospasm.
View Article and Find Full Text PDFConsistent left-right asymmetry requires specific ion currents. We characterize a novel laterality determinant in Xenopus laevis: the ATP-sensitive K(+)-channel (K(ATP)). Expression of specific dominant-negative mutants of the Xenopus Kir6.
View Article and Find Full Text PDFBased on autopsy data collected in Southern China from 2001-2006, 975 cases of sudden unexplained nocturnal death syndrome (SUNDS) were surveyed. Genetic screening of SCN5A gene encoding the voltage dependent cardiac sodium channel was performed in 74 SUNDS cases. The annual occurrence rate of SUNDS in the area was estimated to be about 1 per 100,000 people.
View Article and Find Full Text PDFRationale: Cardioprotective pathways may involve a mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel but its composition is not fully understood.
Objective: We hypothesized that the mitoK(ATP) channel contains a sulfonylurea receptor (SUR)2 regulatory subunit and aimed to identify the molecular structure.
Methods And Results: Western blot analysis in cardiac mitochondria detected a 55-kDa mitochondrial SUR2 (mitoSUR2) short form, 2 additional short forms (28 and 68 kDa), and a 130-kDa long form.
Targeting of ion channels to caveolae, a subset of lipid rafts, allow cells to respond efficiently to extracellular signals. Hyperpolarization-activated cyclic nucleotide-gated channel (HCN) 4 is a major subunit for the cardiac pacemaker. Caveolin-3 (Cav3), abundantly expressed in muscle cells, is responsible for forming caveolae.
View Article and Find Full Text PDFThe cardiac sarcolemmal ATP-sensitive potassium channel (K(ATP)) consists of a Kir6.2 pore and an SUR2 regulatory subunit, which is an ATP-binding cassette (ABC) transporter. K(ATP) channels have been proposed to play protective roles during ischemic preconditioning.
View Article and Find Full Text PDFAdenosine triphosphate-sensitive potassium (K(ATP)) channels are thought to mediate the stress response by sensing intracellular ATP concentration. Cardiomyocyte K(ATP) channels are composed of the pore-forming Kir6.2 subunit and the regulatory sulfonylurea receptor 2 (SUR2).
View Article and Find Full Text PDFIn the vasculature, ATP-sensitive potassium channels (KATP) channels regulate vascular tone. Mice with targeted gene disruptions of KATP subunits expressed in vascular smooth muscle develop spontaneous coronary vascular spasm and sudden death. From these models, it was hypothesized that the loss of KATP channel activity in arterial vascular smooth muscle was responsible for coronary artery spasm.
View Article and Find Full Text PDFAlternative splicing allows multiple mRNAs to be generated from a single gene, which in turn can be translated into a group of diverse proteins with different roles and structures. The outcome of alternative splicing leads to the co-existence of multiple splice variants of a gene at different concentrations in different tissues. The pore-forming subunit of the K(ATP) channel (K(IR)6.
View Article and Find Full Text PDFSHAM-sensitive (STO) alternative respiration is present in the xylose-metabolizing, Crabtree-negative yeast, Pichia stipitis, but its pathway components and physiological roles during xylose metabolism are poorly understood. We cloned PsSTO1, which encodes the SHAM-sensitive terminal oxidase (PsSto1p), by genome walking from wild-type CBS 6054 and subsequently deleted PsSTO1 by targeted gene disruption. The resulting sto1-delta deletion mutant, FPL-Shi31, did not contain other isoforms of Sto protein that were detectable by Western blot analysis using an alternative oxidase monoclonal antibody raised against the Sto protein from Sauromatum guttatum.
View Article and Find Full Text PDF