Creating in vitro culture platforms for monkey embryos is crucial for understanding the initial 4 weeks of early primate embryogenesis. Here, we present a protocol to culture cynomolgus monkey embryos in vitro for 25 days post-fertilization and to delineate the key developmental events of gastrulation and early organogenesis. We describe steps for culturing with a 3D system, immunofluorescence analysis, single-cell RNA sequencing, and bioinformatic analysis.
View Article and Find Full Text PDFUnderstanding cellular and molecular processes underlying the human early post-implantation development represents one of the most fundamental questions in development and stem cell biology. As embryos implant into the uterus a week after fertilization, human development beyond the blastocyst stage is extremely difficult to study due to the inaccessibility of embryos and ethical concerns. The advents in the human embryo in vitro culture system provide an easily accessible, tractable, and perturbable platform to dissect key developmental events of human early embryonic development.
View Article and Find Full Text PDFBackground: Early post-implantation development, especially gastrulation in primates, is accompanied by extensive drastic chromatin reorganization, which remains largely elusive.
Results: To delineate the global chromatin landscape and understand the molecular dynamics during this period, a single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) was applied to in vitro cultured cynomolgus monkey (Macaca fascicularis, hereafter referred to as monkey) embryos to investigate the chromatin status. First, we delineated the cis-regulatory interactions and identified the regulatory networks and critical transcription factors involved in the epiblast (EPI), hypoblast, and trophectoderm/trophoblast (TE) lineage specification.
The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization.
View Article and Find Full Text PDFThe induction of primordial germ-like cells (PGCLCs) from pluripotent stem cells (PSCs) provides a powerful system to study the cellular and molecular mechanisms underlying germline specification, which are difficult to study in vivo. The studies reveal the existence of a species-specific mechanism underlying PGCLCs between humans and mice, highlighting the necessity to study regulatory networks in more species, especially in primates. Harnessing the power of single-cell RNA sequencing (scRNA-seq) analysis, the detailed trajectory of human PGCLCs specification in vitro has been achieved.
View Article and Find Full Text PDFInterspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo.
View Article and Find Full Text PDFThe transition from peri-implantation to gastrulation in mammals entails the specification and organization of the lineage progenitors into a body plan. Technical and ethical challenges have limited understanding of the cellular and molecular mechanisms that underlie this transition. We established a culture system that enabled the development of cynomolgus monkey embryos in vitro for up to 20 days.
View Article and Find Full Text PDFCritical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period.
View Article and Find Full Text PDF