Arc floating in surface flashover can be controlled by reducing the interfacial charge-transfer resistance of ceramics. However, thus far, only a few studies have been conducted on methods of treating ceramic surfaces directly to reduce the interfacial charge-transfer resistance. Herein, we explore the flash sintering behavior of a ceramic surface (3 mol% yttria-stabilized zirconia (3YSZ)) onto which loose metal (iron) powder was spread prior to flash sintering at room temperature (25 °C).
View Article and Find Full Text PDF(Mg, Co, Ni, Cu, Zn)LiO is a type of high-entropy oxide that has high ionic conductivity at room temperature and is used as a solid electrolyte. (Mg, Co, Ni, Cu, Zn)LiO was successfully synthesized from precursor powder by applying reactive flash sintering for less than 4 min at room temperature (25 °C). AC and DC electric fields were independently applied to sinter ceramic samples; consequently, AC and DC electric field application resulted in relative densities that exceeded 90% and 80%, respectively.
View Article and Find Full Text PDFCeramic flash sintering with a strong electric field at room temperature is the most attractive method. This paper presents the flash sintering of ZnO ceramics at room temperature by the application of a 3-kV/cm electric field after a dropwise addition of ethanol. This method is simple and easy to control.
View Article and Find Full Text PDF