Memristive switching devices with electrically and optically invoked synaptic behaviors show great promise in constructing an artificial biological visual system. Through rational design and integration, 2D materials and their van der Waals (vdW) heterostructures can be applied to realize multifunctional optoelectronic devices. Here, a multifunctional optoelectronic synaptic memtransistor based on a SnSe/MoS vdW p-n heterojunction to simulate the human biological visual system is reported.
View Article and Find Full Text PDFRecently, atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted great interest in electronic and opto-electronic devices for high-integration-density applications such as data storage due to their small vertical dimension and high data storage capability. Here, we report a memristor based on free-standing multilayer molybdenum disulfide (MoS) with a high current on/off ratio of ∼10 and a stable retention for at least 3000 s. Through light modulation of the carrier density in the suspended MoS channel, the on/off ratio can be further increased to ∼10.
View Article and Find Full Text PDF