Huan Jing Ke Xue
November 2019
Based on the lidar data provided by cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) from December 2017 to November 2018, the temporal and spatial variation characteristics of 532 nm aerosol extinction coefficient, aerosol depolarization ratio, aerosol color ratio, and various types of aerosols in the troposphere over the Yangtze River Delta region of China were analyzed in detail. The altitude variation of aerosol optical parameters showed that the extinction ability of aerosols was generally stronger in the lower troposphere than that in the upper troposphere, the shape of particles was generally more regular in the lower troposphere than that in the upper troposphere, and the size of particles was generally smaller in the lower troposphere than that in the upper troposphere. The seasonal variation of aerosol optical parameters showed that the extinction ability of aerosols in the upper troposphere was generally stronger in summer and autumn than that in winter and spring, the shape of particles below 2 km was generally more regular in summer and autumn than that in winter and spring, and the size range of particles in the upper troposphere was generally larger in summer and autumn than that in winter and spring.
View Article and Find Full Text PDFHuan Jing Ke Xue
December 2017
Surface ozone concentration data from 189 cities in China in 2015 were processed by ArcGIS software in order to obtain the characteristics of the surface ozone concentration, such as time and space, topographical features, temperature, etc. The trend for surface ozone concentration was a decrease followed by an increase in China in 2015. The concentrations during the four seasons followed the order:summer > autumn > spring > winter, and the maximum appeared in July.
View Article and Find Full Text PDF