Lactic acid bacteria isolated from Irish pork and beef abattoirs were analysed for their susceptibility to antimicrobials. Thirty-seven isolates (12 enterococci, 10 lactobacilli, 8 streptococci, 3 lactococci, 2 Leuconostoc, and 2 pediococci) were examined for phenotypic resistance using the E-test and their minimum inhibitory concentration to a panel of six antibiotics (ampicillin, chloramphenicol, erythromycin, streptomycin, tetracycline, and vancomycin) was recorded. The corresponding genetic determinants responsible were characterised by PCR.
View Article and Find Full Text PDFThe transferability of antimicrobial resistance from lactic acid bacteria (LAB) to potential pathogenic strains was studied using in vitro methods and mating in a food matrix. Five LAB donors containing either erythromycin or tetracycline resistance markers on transferable elements were conjugally mated with LAB (Enterococcus faecalis, Lactococcus lactis) and pathogenic strains (Listeria spp., Salmonella ssp.
View Article and Find Full Text PDFThree wild-type dairy isolates of lactic acid bacteria (LAB) and one Lactococcus lactis control strain were analyzed for their ability to transfer antibiotic resistance determinants (plasmid or transposon located) to two LAB recipients using both in vitro methods and in vivo models. In vitro transfer experiments were carried out with the donors and recipients using the filter mating method. In vivo mating examined transfer in two natural environments, a rumen model and an alfalfa sprout model.
View Article and Find Full Text PDFPlate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting.
View Article and Find Full Text PDFOptimal conditions and a standardized method for conjugation between two model lactococcal strains, Lactococcus lactis SH4174 (pAMbeta1-containing, erythromycin resistant donor) and L. lactis Bu2-60 (plasmid-free, erythromycin sensitive recipient), were developed and tested in a inter-laboratory experiments involving five laboratories from different countries. The ultimate goal of the study was to assess the microbial potential of antibiotic resistance transfer among Lactic Acid Bacteria (LAB).
View Article and Find Full Text PDF