Background: Transposome-based technologies have enabled the streamlined production of sequencer-ready DNA libraries; however, current methods are highly sensitive to the amount and quality of input nucleic acid.
Results: We describe a new library preparation technology (Nextera DNA Flex) that utilizes a known concentration of transposomes conjugated directly to beads to bind a fixed amount of DNA, and enables direct input of blood and saliva using an integrated extraction protocol. We further report results from libraries generated outside the standard parameters of the workflow, highlighting novel applications for Nextera DNA Flex, including human genome builds and variant calling from below 1 ng DNA input, customization of insert size, and preparation of libraries from short fragments and severely degraded FFPE samples.
Haplotype-resolved genome sequencing promises to unlock a wealth of information in population and medical genetics. However, for the vast majority of genomes sequenced to date, haplotypes have not been determined because of cumbersome haplotyping workflows that require fractions of the genome to be sequenced in a large number of compartments. Here we demonstrate barcode partitioning of long DNA molecules in a single compartment using "on-bead" barcoded tagmentation.
View Article and Find Full Text PDFBackground: Next-generation sequencing (NGS) has transformed genomic research by reducing turnaround time and cost. However, no major breakthrough has been made in the upstream library preparation methods until the transposase-based Nextera method was invented. Nextera combines DNA fragmentation and barcoding in a single tube reaction and therefore enables a very fast workflow to sequencing-ready DNA libraries within a couple of hours.
View Article and Find Full Text PDFMotivation: Mate pair protocols add to the utility of paired-end sequencing by boosting the genomic distance spanned by each pair of reads, potentially allowing larger repeats to be bridged and resolved. The Illumina Nextera Mate Pair (NMP) protocol uses a circularization-based strategy that leaves behind 38-bp adapter sequences, which must be computationally removed from the data. While 'adapter trimming' is a well-studied area of bioinformatics, existing tools do not fully exploit the particular properties of NMP data and discard more data than is necessary.
View Article and Find Full Text PDFHuman T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells both in vitro and in vivo has been demonstrated in HTLV-1 infection.
View Article and Find Full Text PDFObjectives: As a result of the introduction of rapid benchtop sequencers, the time required to subculture a bacterial pathogen to extract sufficient DNA for library preparation can now exceed the time to sequence said DNA. We have eliminated this rate-limiting step by developing a protocol to generate DNA libraries for whole-genome sequencing directly from single bacterial colonies grown on primary culture plates.
Methods: We developed our protocol using single colonies of 17 bacterial pathogens responsible for severe human infection that were grown using standard diagnostic media and incubation conditions.
DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24 microbial communities from host-associated and free-living environments. A critical question as more sequencing platforms become available is whether biological conclusions derived on one platform are consistent with what would be derived on a different platform.
View Article and Find Full Text PDFMotivation: The relative abundance of retroviral insertions in a host genome is important in understanding the persistence and pathogenesis of both natural retroviral infections and retroviral gene therapy vectors. It could be estimated from a sample of cells if only the host genomic sites of retroviral insertions could be directly counted. When host genomic DNA is randomly broken via sonication and then amplified, amplicons of varying lengths are produced.
View Article and Find Full Text PDFWhole genome amplification by the multiple displacement amplification (MDA) method allows sequencing of DNA from single cells of bacteria that cannot be cultured. Assembling a genome is challenging, however, because MDA generates highly nonuniform coverage of the genome. Here we describe an algorithm tailored for short-read data from single cells that improves assembly through the use of a progressively increasing coverage cutoff.
View Article and Find Full Text PDFHuman T-lymphotropic virus type 1 (HTLV-1) persists by driving clonal proliferation of infected T lymphocytes. A high proviral load predisposes to HTLV-1-associated diseases. Yet the reasons for the variation within and between persons in the abundance of HTLV-1-infected clones remain unknown.
View Article and Find Full Text PDFAll cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer.
View Article and Find Full Text PDFBackground: Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients.
View Article and Find Full Text PDFDNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost.
View Article and Find Full Text PDFMany proteins can sense the relative orientations of two sequences at distant locations in DNA: some require sites in inverted (head-to-head) orientation, others in repeat (head-to-tail) orientation. Like many restriction enzymes, the BspMI endonuclease binds two copies of its target site before cleaving DNA. Its target is an asymmetric sequence so two sites in repeat orientation differ from sites in inverted orientation.
View Article and Find Full Text PDFInt J Geriatr Psychiatry
February 2002
Background: Many studies have sought to determine the predictors of institutionalization of patients with dementia. Such studies, performed in developed western societies, have come to various conclusions which may not be supported in an East Asian culture such as that found in Korea.
Objectives: This study aimed to determine the factors that predict institutionalization of patients in Korea diagnosed with dementia.
Type IIs endonucleases recognize asymmetric DNA sequences and cleave both strands at fixed positions downstream of the sequence. Many type IIs enzymes, including BspMI, cleave substrates with two sites more rapidly than those with one site. They usually act sequentially on DNA with two sites, but BspMI converted such a substrate directly to the final products cut at both sites.
View Article and Find Full Text PDFType IIs restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions, typically several base pairs away from the recognition site. These enzymes are generally monomers that transiently associate to form dimers to cleave both strands. Their reactions could involve bridging interactions between two copies of their recognition sequence.
View Article and Find Full Text PDF