Publications by authors named "Nial Harte"

Background: Since the serendipitous discovery of bovine α-lactalbumin made lethal to tumour cells (BAMLET)/human α-lactalbumin made lethal to tumour cells there has been an increased interest in the ability of the two components, oleic acid and α-lactalbumin, to form anti-cancer complexes. Here we have investigated the in-vitro efficacy of the BAMLET complex in killing oral cancer (OC) cells, determined the active component of the complex and investigated possible biological mechanisms.

Materials And Methods: Two OC cell lines (±p53 mutation) and one dysplastic cell line were used as a model of progressive oral carcinogenesis.

View Article and Find Full Text PDF

Despite significant advances, the molecular identity of the cytotoxic species populated during in vivo amyloid formation crucial for the understanding of neurodegenerative disorders is yet to be revealed. In this study lysozyme prefibrillar oligomers and fibrils in both mature and sonicated states have been isolated through an optimized ultrafiltration/ultracentrifugation method and characterized with various optical spectroscopic techniques, atomic force microscopy, and transmission electron microscopy. We examined their level and mode of toxicity on rat pheochromocytoma (PC12) cells in both differentiated and undifferentiated states.

View Article and Find Full Text PDF

HAMLET (human α-lactalbumin made lethal to tumour cells) and its related partially unfolded protein-fatty acid complexes are novel biomolecular nanoparticles that possess relatively selective cytotoxic activities towards tumour cells. One of the key characteristics is the requirement for the protein to be partially unfolded, hence endowing native proteins with additional functions in the alternatively folded states. Beginning with the history of its discovery and development, the cellular targets that appear to be strongly correlated with tumour cell death are introduced in the present article.

View Article and Find Full Text PDF

Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlqpf1qofsdul0o7i2fltrbm2c8ptjafr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once