The electrocatalytic reduction process is a promising technology for decomposing chlorinated organic pollutants in water but is limited by the lack of low-cost catalysts that can achieve high activity and selectivity. In studying electrochemical dechlorination of 2-chlorophenol (2-CP) in aqueous media, we find that cobalt phthalocyanine molecules supported on carbon nanotubes (CoPc/CNT), which is a highly effective electrocatalyst for breaking the aliphatic C-Cl bonds in 1,2-dichloroethane (DCA) and trichloroethylene (TCE), are completely inactive for reducing the aromatic C-Cl bond in 2-CP. Detailed mechanistic investigation, including volcano plot correlation between dechlorination rate and atomic hydrogen adsorption energy on various transition metal surfaces, kinetic measurements, in situ Raman spectroscopy, and density functional theory calculations, reveals that the reduction of the aromatic C-Cl bond in 2-CP goes through a hydrodechlorination mechanism featuring a bimolecular reaction between adsorbed atomic hydrogen and 2-CP on the catalyst surface, which requires neighboring catalytic sites, whereas the aliphatic C-Cl bonds in DCA and TCE are cleaved by direct electron transfer from the catalyst, which can occur on isolated single sites.
View Article and Find Full Text PDFPhotothermal CO reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K -Co-C) catalyst mimicking the structure of a lotus pod that addresses these challenges.
View Article and Find Full Text PDFWe report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron-hole pairs.
View Article and Find Full Text PDFElectrochemistry can provide an efficient and sustainable way to treat environmental waters polluted by chlorinated organic compounds. However, the electrochemical valorization of 1,2-dichloroethane (DCA) is currently challenged by the lack of a catalyst that can selectively convert DCA in aqueous solutions into ethylene. Here we report a catalyst comprising cobalt phthalocyanine molecules assembled on multiwalled carbon nanotubes that can electrochemically decompose aqueous DCA with high current and energy efficiencies.
View Article and Find Full Text PDFWe report a precious-metal-free molecular catalyst-based photocathode that is active for aqueous CO reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3-aminopropyl)triethoxysilane linker to p-type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2022
The electrochemical conversion of waste CO into useful fuels and chemical products is a promising approach to reduce CO emissions; however, several challenges still remain to be addressed. Thus far, most CO reduction studies use pure CO as the gas reactant, but CO emissions typically contain a number of gas impurities, such as nitrogen oxides, oxygen gas, and sulfur oxides. Gas impurities in CO can pose a significant obstacle for efficient CO electrolysis because they can influence the reaction and catalyst.
View Article and Find Full Text PDF