Background: Yeast one-hybrid (Y1H) is a common technique for identifying DNA-protein interactions, and robotic platforms have been developed for high-throughput analyses to unravel the gene regulatory networks in many organisms. Use of these high-throughput techniques has led to the generation of increasingly large datasets, and several software packages have been developed to analyze such data. We previously established the currently most efficient Y1H system, meiosis-directed Y1H; however, the available software tools were not designed for processing the additional parameters suggested by meiosis-directed Y1H to avoid false positives and required programming skills for operation.
View Article and Find Full Text PDFEukaryotic gene expression is often tightly regulated by interactions between transcription factors (TFs) and their DNA targets. Yeast one-hybrid (Y1H) is one of the most extensively used methods to discover these interactions. We developed a high-throughput meiosis-directed yeast one-hybrid system using the Magic Markers of the synthetic genetic array analysis.
View Article and Find Full Text PDF