Publications by authors named "Ni Zhong"

Moiré superlattices in two-dimensional stacks have attracted worldwide interest due to their unique electronic properties. A typical example is the moiré ferroelectricity, where adjacent moirés exhibit opposite spontaneous polarization that can be switched through interlayer sliding. However, in contrast to ideal regular ferroelectric moiré domains (equilateral triangles) built in most theoretical models, the unavoidable irregular moiré supercells (non-equilateral triangles) induced by external strain fields during the transfer process have been given less attention.

View Article and Find Full Text PDF

The Topological Hall effect (THE) is a fascinating physical phenomenon related to topological spin textures, serving as a powerful electrical probe for detecting and understanding these unconventional magnetic orders and skyrmions. Recently, the THE has been observed in strontium ruthenate (SrRuO, SRO) thin films and its heterostructures, which originates from the disruption of interfacial inversion symmetry and Dzyaloshinskii-Moriya interaction (DMI). Here, we demonstrate a practically pure proton doping effect for controlling the DMI and THE in the SRO epitaxial films using the Pt electrode-assisted hydrogenation method.

View Article and Find Full Text PDF

The global chicken business has grown rapidly, producing millions of tons of feather waste annually. Keratinase is a special enzyme that catalyzes the degradation of keratin and can be applied to the feed industry. In this study, we initially set the tone for the acid-resistant mutation of spore surface-display keratinase cotG-KERQ7 by replacing base-catalytic residues in the active center.

View Article and Find Full Text PDF

Obesity significantly contributes to the progression of cardiovascular diseases (CVDs) and elevates the risk of cardiovascular mortality. Atherosclerosis, the primary pathogenic process underlying CVDs, initiates with vascular endothelial dysfunction, serving as the cornerstone of vascular lesions. Adipokines, bioactive molecules secreted by adipose tissue that regulate metabolic and endocrine functions, play a pivotal role in modulating endothelial function during atherosclerosis.

View Article and Find Full Text PDF

Manganese peroxidase (MnP), a vital extracellular enzyme for the degradation of lignin and other organic pollutants, has demonstrated immense potential for agricultural and environmental applications, including straw pretreatment, feed fermentation, mycotoxin degradation, and water treatment. However, current research remains in its exploratory phase, with naturally sourced MnP unable to meet industrial-scale demands and no mature commercial enzyme preparations available on the market. This comprehensive review innovatively constructs a framework for MnP research, probing into its molecular conformation and catalytic principles, while providing an overview of the advancements in high-throughput screening and designing strategies.

View Article and Find Full Text PDF

This study presents an exhaustive characterization of the enzymatic attributes and structural properties of trehalose-6-phosphate phosphatase (TPP) derived from Fusarium graminearum. Enzyme activity was evaluated through a meticulously designed enzymatic assay. The findings indicate that the molecular weight of the enzyme is approximately 99.

View Article and Find Full Text PDF

Investigating two-dimensional (2D) valleytronic materials opens a new chapter in physics and facilitates the emergence of pioneering technologies. Nevertheless, this nascent field faces substantial challenges, primarily attributed to the inherent issue of valley energy degeneracy and the manipulation of valley properties. To break these constraints, the application of external fields has become pivotal for both generating and manipulating the valley properties of 2D systems.

View Article and Find Full Text PDF

Background: Lignin peroxidase is closely related to agriculture and food as it improves the quality of feedstuffs, facilitates the degradation of lignin in agricultural wastes, and degrades azo dyes that have similar complex structures to lignin. However, the current status of homologous or heterologous expression of lignin peroxidase is unsatisfactory and needs to be modified with the help of immobilization and directed evolution to maximize its potential. Directed evolution technology is an effective strategy for designing and improving enzyme characteristics, and Bacillus subtilis spore surface display technology is an efficient method for preparing immobilized enzymes.

View Article and Find Full Text PDF

The discovery of nanoscale ferroelectricity in hafnia (HfO) has paved the way for next generation high-density, non-volatile devices. Although the surface conditions of nanoscale HfO present one of the fundamental mechanism origins, the impact of external environment on HfO ferroelectricity remains unknown. In this study, the deleterious effect of ambient moisture is examined on the stability of ferroelectricity using HfZrO (HZO) films as a model system.

View Article and Find Full Text PDF

A recent study showed that just one point mutation F33 to Y in the complementarity-determining region 1 of heavy chain (H-CDR1) could lead to the auto-antibody losing its DNA binding ability. However, the potential molecular mechanisms have not been well elucidated. In this study, we investigated how the antibody lost the DNA binding ability caused by mutation F33 to Y in the H-CDR1.

View Article and Find Full Text PDF

Nanoengineering polar oxide films have attracted great attention in energy storage due to their high energy density. However, most of them are deposited on thick and rigid substrates, which is not conducive to the integration of capacitors and applications in flexible electronics. Here, an alternative strategy using van der Waals epitaxial oxide dielectrics on ultra-thin flexible mica substrates is developed and increased the disorder within the system through high laser flux.

View Article and Find Full Text PDF

Background: Establishing causal relationships between metabolic biomarkers and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) is a challenge faced by observational studies. In this study, our aim was to investigate the causal associations between plasma metabolites and neurodegenerative diseases using Mendelian Randomization (MR) methods.

Methods: We utilized genetic associations with 1400 plasma metabolic traits as exposures.

View Article and Find Full Text PDF

Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale.

View Article and Find Full Text PDF

Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process.

View Article and Find Full Text PDF

The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons.

View Article and Find Full Text PDF

Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy.

View Article and Find Full Text PDF

2D polarization materials have emerged as promising candidates for meeting the demands of device miniaturization, attributed to their unique electronic configurations and transport characteristics. Although the existing inherent and sliding mechanisms are increasingly investigated in recent years, strategies for inducing 2D polarization with innovative mechanisms remain rare. This study introduces a novel 2D Janus state by modulating the puckered structure.

View Article and Find Full Text PDF

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad.

View Article and Find Full Text PDF

Limosilactobacillus fermentum is an important member of the lactic acid bacteria group and holds immense potential for probiotic properties in human health and relevant industries. In this study, a comparative probiogenomic approach was applied to analyze the genome sequence of L. fermentum 3872, which was extracted from a commercially available yogurt sample, along with 20 different publicly available strains.

View Article and Find Full Text PDF

The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients.

View Article and Find Full Text PDF

Lignin peroxidase (LiP) has a good application prospect in lignin degradation, environmental treatment, straw feed, and other industries. However, its application is constrained by the high price and low stability of enzyme preparation. In this study, the Escherichia coli-Bacillus subtilis (E.

View Article and Find Full Text PDF

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time.

View Article and Find Full Text PDF

Ferroelectric polymer-based electrocaloric effect may lead to sustainable heat pumps and refrigeration owing to the large electrocaloric-induced entropy changes, flexible, lightweight and zero-global warming potential. Herein, low-k nanodiamonds are served as extrinsic dielectric fillers to fabricate polymeric nanocomposites for electrocaloric refrigeration. As low-k nanofillers are naturally polar-inactive, hence they have been widely applied for consolidate electrical stability in dielectrics.

View Article and Find Full Text PDF

Tea aroma greatly varies with the production date. This study investigated the aroma differences among black teas processed on different dates (March 23rd, April 8th, April 15th, April 27th, and May 7th) in the spring. A sensory evaluation showed that the black tea produced on April 15th had a strong and lasting sweet aroma and the highest score of 93.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond5d9t59c9h3fcsupuak80i3i9phpadcs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once