This paper investigates the flow performance and mechanical properties of underground gelled filling materials made from potash mine tailings, using lime as a gel. It demonstrates the feasibility of using lime as a gel, potash mine tailings as aggregate, and replacing water with potash mine tailings to create filling materials that meet design requirements for flow and compressive strength. The role of lime in the hardening process is explored through X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and infrared analysis.
View Article and Find Full Text PDFThe utilization of silicomanganese slag (SMS) for the partial substitution of cement holds significant importance in handling environmental risks and achieving the harmless and resourceful utilization of industrial solid wastes. Nevertheless, an in-depth analysis of the leaching behaviors of heavy metals and the solidification/stabilization mechanisms in SMS and cementitious materials is still lacking. In this study, we adopted the toxicity characteristic leaching procedure and horizontal vibration method to simulate the natural leaching environment, thereby exploring the leaching risks related to heavy metals in the aforementioned materials.
View Article and Find Full Text PDFMultiple solid waste-based amendments are used for arsenic (As)-contaminated soil remediation, but their mechanisms in inhibiting As release and the effects on soil health in real sites remain poorly understood. Here, an amendment consisting of steel slag (SS), coal fly ash (CFA) and Fe(Ⅱ), namely, Fe(Ⅱ) assisted SS and CFA, was applied to an As-contaminated mining soil. 120 days field experimental results revealed that amendment addition in low-As soil (LA soil) and high-As soil (HA soil) significantly increased amorphous Fe(Ⅲ) (hydro)oxides content and decreased dissolved organic carbon (DOC), and thus inhibited As mobilization.
View Article and Find Full Text PDFThis paper presents a novel low-carbon binder formulated from fly ash (FA), ground granulated blast furnace slag, steel slag, and desulfurization gypsum as a quaternary solid waste-based material. It specifically examines the influence of FA content on the mechanical properties and hydration reactions of the quaternary solid waste-based binder. The mortar test results indicate that the optimal FA content is 10%, which yields a 28-day compressive strength 11.
View Article and Find Full Text PDFUsing steel slag (SS) as cementitious material and fine aggregate in concrete is an effective and environmental method for SS consumption and cost reduction. In this paper, SS was recycled in large volumes in concrete as partial cementitious material and fine aggregate. The compressive strength and reaction mechanism of cementitious material with different SS powder contents including 20%, 25%, 30%, and 35% were presented.
View Article and Find Full Text PDFThe remediation of heavy metals/metalloids (HMs) co-contaminated soil by solid wastes-based stabilizers (SWBS) has received major concern recently. Based on the literature reported in the latest years (2010-2023), this review systematically summarizes the different types of solid wastes (e.g.
View Article and Find Full Text PDFSteel slag, desulphurised ash, desulphurised gypsum and ultra-fine iron tailing sand are common industrial solid wastes with low utilisation rates. Herein, industrial solid wastes (steel slag, desulphurised gypsum and desulphurised ash) were used as the main raw materials to prepare a gelling material and ultra-fine tailing was used as an aggregate to prepare a new type of cementing filler for mine filling. The optimal composition of the cementing filler was 75% steel slag, 16.
View Article and Find Full Text PDFMaterials (Basel)
November 2022
This study used refining slag (RS), ground granulated blast furnace slag (GGBS), steel slag (SS), and desulfurized gypsum (DG) to prepare a mine-filling cementitious material. The developed cementitious material and tailings sand were mixed to prepare a novel mine backfill material with better performance and a lower cost. The macroscopic properties and hydration mechanism of the cemented solid waste-based backfill were investigated when RS content was 0, 5%, 10%, 15%, 20%, 30% and 40%.
View Article and Find Full Text PDFBackground & Aims: N-methyladenosine (mA) modification plays a critical role in progression of hepatocellular carcinoma (HCC), and aerobic glycolysis is a hallmark of cancer including HCC. However, the role of YTHDF3, one member of the core readers of the mA pathway, in aerobic glycolysis and progression of HCC is still unclear.
Methods: Expression levels of YTHDF3 in carcinoma and surrounding tissues of HCC patients were evaluated by immunohistochemistry.
Imitation gemstone glass has numerous characteristics, including low cost, rich colour, stable colouring, and the formation of colour-changing effects that can meet the jewellery market demand for beautiful gemstones of middle and low grades. In this study, four types of gem-imitating glass were prepared by the elemental substitution of praseodymium, neodymium and chromium elements based on rare earth glass and examined by combining refractive index, density, spectral characteristics and colour parameters. Sample 1 contained only PrO and showed a golden-yellow colour like chrysoberyl.
View Article and Find Full Text PDFSand, stone, tailings and other aggregates often contain a small amount of clay mineral and their hydration activity is low, thereby lowering concrete performance indexes while negatively affecting their resource utilisation. In this study, clay minerals, calcium hydroxide and desulfurised gypsum were used to prepare cementitious materials to examine kaolinite, montmorillonite, illite and chlorite clay mineral contents under compound activation. The effects of curing temperature and water reducer on clay samples were analysed.
View Article and Find Full Text PDFBinary transition metal oxides (BTMOs) are regarded as potential anode materials for lithium-ion batteries (LIBs) owing to their low cost, high specific capacities, and environmental friendliness. In this work, MnVO nanoflakes are successfully synthesized by a facile hydrothermal method. When evaluated as an anode material for LIBs, benefiting from the activation process, the as-prepared MnVO nanoflake electrode delivers a high reversible specific capacity of 1439 mA h g after 300 cycles at a current density of 200 mA g, and especially presents a specific capacity of 1010 mA h g after 700 cycles at a higher current density of 1 A g.
View Article and Find Full Text PDFThe growing global demand for non-ferrous metals has led to serious environmental issues involving uncovered mine site slag dumps that threaten the surrounding soils, surface waters, groundwater, and the atmosphere. Remediation of these slags using substitute cement materials for ordinary Portland cement (OPC) and precursors for alkali-activated materials (AAMs) can convert hazardous solid wastes into valuable construction materials, as well as to attain the desired solidification and stabilization (S/S) of heavy metal(loid)s (HM). This review discusses the current research on the effect of non-ferrous slags on the reaction mechanisms of the OPC and AAM.
View Article and Find Full Text PDFFlue-gas desulphurization (FGD) gypsum is a highly prevalent industrial by-product worldwide, which can be an excellent alternative to natural gypsum due to its high content of CaSO·2HO. The preparation of α-calcium sulfate hemihydrate is a high-value pathway for the efficient use of FGD gypsum. Here, a dynamic method, or an improved autoclaved process, was used to produce α-calcium sulfate hemihydrate from FGD gypsum.
View Article and Find Full Text PDFMagnetic separation is an effective method to recover iron from steel slag. However, the ultra-fine tailings generated from steel slag become a new issue for utilization. The dry separation processes generates steel slag powder, which has hydration activity and can be used as cement filler.
View Article and Find Full Text PDFBlast furnace slag (BFS), steel slag (SS), and flue gas desulfurized gypsum (FGDG) were used to prepare metallurgical slag-based binder (MSB), which was afterwards mixed with high-antimony-containing mine tailings to form green mining fill samples (MBTs) for Sb solidification/stabilization (S/S). Results showed that all MBT samples met the requirement for mining backfills. In particular, the unconfined compressive strength of MBTs increased with the curing time, exceeding that of ordinary Portland cement (OPC).
View Article and Find Full Text PDFMetal vanadates have been popularly advocated as promising anode materials for lithium-ion batteries (LIBs) benefiting from their high theoretical specific capacity and abundant resources. Given that manganese and vanadium are reasonably economical elements and enjoy assorted redox reactions, they have extensive application prospects in energy storage systems. Here, we synthesized cubic MnVO as an anode for LIBs by an efficient sol-gel process.
View Article and Find Full Text PDFA series of Fe-doped NaMnFe(PO)(PO) ( = 0, 0.2, 0.4) (abbreviated as NMFP-0/NMFP-0.
View Article and Find Full Text PDFBackground: Cellular dedifferentiation is a regenerative prerequisite that warrants cell cycle reentry and appropriate mitotic division during de novo formation of cardiomyocytes. In the light of our previous finding that expression of injury-responsive element, Wilms Tumor factor 1 (WT1), in pericardial adipose stromal cells (ADSC) conferred a compelling reparative activity with concomitant IL-6 upregulation, we then aim to unravel the mechanistic network that governs the process of regenerative dedifferentiation after ADSC-based therapy.
Methods And Results: WT1-expressing ADSC (eGFP:WT1) were irreversibly labeled in transgenic mice (WT1-iCre/Gt(ROSA)26Sor-eGFP) primed with myocardial infarction.
Ammonia-soda residue (ASR) is the main solid waste generated from soda manufacturing and is hard to reuse due to its complex chemical composition. This study investigated the influence of ASR content on the strength and chloride-resistance capacity of concrete based on basic oxygen furnace slag and ground blast furnace slag. The hydration and chloride resistance mechanisms were analysed by comparing the hydrate products and pore structural changes.
View Article and Find Full Text PDFThe disposal of nonferrous metal tailings poses a global economic and environmental problem. After employing a clinker-free steel slag-based binder (SSB) for the solidification/stabilization (S/S) of arsenic-containing tailings (AT), the effectiveness, leaching risk, and leaching mechanism of the SSB S/S treated AT (SST) were investigated via the Chinese leaching tests HJ/T299-2007 and HJ557-2010 and the leaching tests series of the multi-process Leaching Environmental Assessment Framework (LEAF). The test results were compared with those of ordinary Portland cement S/S treated AT (PST) and showed that the arsenic (As) curing rates for SST and PST samples were in the range of 96.
View Article and Find Full Text PDF