An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPaternal environmental factors can epigenetically influence gene expressions in offspring. We demonstrate that restraint stress, an experimental model for strong psychological stress, to fathers affects the epigenome, transcriptome, and metabolome of offspring in a MEKK1-dATF2 pathway-dependent manner in Drosophila melanogaster. Genes involved in amino acid metabolism are upregulated by paternal restraint stress, while genes involved in glycolysis and the tricarboxylic acid (TCA) cycle are downregulated.
View Article and Find Full Text PDFPaternal dietary conditions may contribute to metabolic disorders in offspring. We have analyzed the role of the stress-dependent epigenetic regulator cyclic AMP-dependent transcription factor 7 (ATF7) in paternal low-protein diet (pLPD)-induced gene expression changes in mouse liver. Atf7 mutations cause an offspring phenotype similar to that caused by pLPD, and the effect of pLPD almost vanished when paternal Atf7 mice were used.
View Article and Find Full Text PDFIncreasing evidence indicates that parental diet affects the metabolism and health of offspring. It is reported that paternal low-protein diet (pLPD) induces glucose intolerance and the expression of genes involved in cholesterol biosynthesis in mouse offspring liver. The aim of the present study was to determine the effect of a pLPD on gene expression in offspring white adipose tissue (WAT), another important tissue for the regulation of metabolism.
View Article and Find Full Text PDFVarious stresses increase disease susceptibility and accelerate aging, and increasing evidence suggests that these effects can be transmitted over generation. Epidemiological studies suggest that stressors experienced by parents affect the longevity of their offspring, possibly by regulating telomere dynamics. Telomeres are elongated by telomerase and shortened by certain stresses as well as telomere repeat-containing RNA (TERRA), a telomere transcript.
View Article and Find Full Text PDF