Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV) infection for a hepatic cell line (HuH-7) normally permissive to the virus.
View Article and Find Full Text PDFThree-dimensional (3D) culture systems have been introduced to provide cells with a biomimetic environment that is similar to in vivo conditions. Among the polymeric molecules available, sodium-alginate (Na-alg) salt is a material that is currently employed in different areas of drug delivery and tissue engineering, because it offers biocompatibility and optimal chemical properties, and its gelation with calcium chloride provides calcium-alginate (Ca-alg) scaffolds with mechanical stability and relative permeability. In this work, four different preparations of Ca-alg beads with varying Na-alg viscosity and concentration were used for a human hepatoma cell line (Huh-7) encapsulation.
View Article and Find Full Text PDFNovel calcium alginate poly(ethylene glycol) hybrid microspheres (Ca-alg-PEG) were developed and evaluated as potentially suitable materials for cell microencapsulation. Grafting 5-13% of the backbone units of sodium alginate (Na-alg) with α-amine-ω-thiol PEG maintained the gelling capacity in presence of calcium ions, while thiol end groups allowed for preparing chemically crosslinked hydrogel via spontaneous disulfide bond formation. The combination of these two gelling mechanisms yielded Ca-alg-PEG.
View Article and Find Full Text PDF