Publications by authors named "Nhi T Tran"

Introduction: Birth asphyxia-induced encephalopathy is a major cause of long-term neurological morbidity, including cognitive and motor deficits. A proposed treatment is maternal creatine supplementation for prophylactic neuroprotection. This study examined how maternal creatine supplementation with or without birth asphyxia affected the behaviour of spiny mice offspring.

View Article and Find Full Text PDF

Objective: Hypoxic-ischemic encephalopathy (HIE) is a major cause of perinatal brain injury. Creatine is a dietary supplement that can increase intracellular phosphocreatine to improve the provision of intracellular adenosine triphosphate (ATP) to meet the increase in metabolic demand of oxygen deprivation. Here, we assessed prophylactic fetal creatine supplementation in reducing acute asphyxia-induced seizures, disordered electroencephalography (EEG) activity and cerebral inflammation and cell death histopathology.

View Article and Find Full Text PDF

Objective: Intravenous epinephrine administration is preferred during neonatal resuscitation, but may not always be rapidly administered due to lack of equipment or trained staff. We aimed to compare the time to return of spontaneous circulation (ROSC) and post-ROSC haemodynamics between intravenous, endotracheal (ET) and intranasal (IN) epinephrine in severely asphyxic, bradycardic newborn lambs.

Methods: After instrumentation, severe asphyxia (heart rate <60 bpm, blood pressure ~10 mm Hg) was induced by clamping the cord in near-term lambs.

View Article and Find Full Text PDF
Article Synopsis
  • Prenatal exposure to bisphenol A (BPA) is linked to increased autism symptoms and diagnosis in young boys with low aromatase gene activity.
  • Research indicates that high BPA levels impact brain methylation patterns related to aromatase, which may mediate the risk of autism.
  • Male mice studies suggest that mid-gestation BPA exposure causes ASD-like behaviors, but these can be improved with the intervention of 10-hydroxy-2-decenoic acid (10HDA).
View Article and Find Full Text PDF

Background: Intrauterine inflammation and the requirement for mechanical ventilation independently increase the risk of perinatal brain injury and adverse neurodevelopmental outcomes. We aimed to investigate the effects of mechanical ventilation for 24 h, with and without prior exposure to intrauterine inflammation, on markers of brain inflammation and injury in the preterm sheep brain.

Methods: Chronically instrumented fetal sheep at ~115 days of gestation were randomly allocated to receive a single intratracheal dose of 1 mg lipopolysaccharide (LPS) or isovolumetric saline, then further randomly allocated 1 h after to receive mechanical ventilation with room air or no mechanical ventilation (unventilated control + saline [UVC,  = 7]; mechanical ventilation + saline [VENT,  = 8], unventilated control + intratracheal LPS [UVC + LPS,  = 7]; ventilation + intratracheal LPS [VENT + LPS,  = 7]).

View Article and Find Full Text PDF

Background: Intrauterine inflammation is considered a major cause of brain injury in preterm infants, leading to long-term neurodevelopmental deficits. A potential contributor to this brain injury is dysregulation of neurovascular coupling. We have shown that intrauterine inflammation induced by intra-amniotic lipopolysaccharide (LPS) in preterm lambs, and postnatal dopamine administration, disrupts neurovascular coupling and the functional cerebral haemodynamic responses, potentially leading to impaired brain development.

View Article and Find Full Text PDF

Background: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury.

View Article and Find Full Text PDF

Extremely preterm infants are often exposed to long durations of mechanical ventilation to facilitate gas exchange, resulting in ventilation-induced lung injury (VILI). New lung protective strategies utilizing noninvasive ventilation or low tidal volumes are now common but have not reduced rates of bronchopulmonary dysplasia. We aimed to determine the effect of 24 h of low tidal volume ventilation on the immature lung by ventilating preterm fetal sheep in utero.

View Article and Find Full Text PDF

Background: Preterm infants have immature respiratory drive and often require prolonged periods of mechanical ventilation. Prolonged mechanical ventilation induces systemic inflammation resulting in ventilation-induced brain injury, however its effect on brainstem respiratory centers is unknown. We aimed to determine the effects of 24 h of mechanical ventilation on inflammation and injury in brainstem respiratory centres of preterm fetal sheep.

View Article and Find Full Text PDF

Background: Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential.

View Article and Find Full Text PDF

Background: Creatine supplementation during pregnancy is a promising prophylactic treatment for perinatal hypoxic brain injury. Previously, in near-term sheep we have shown that fetal creatine supplementation reduces cerebral metabolic and oxidative stress induced by acute global hypoxia. This study investigated the effects of acute hypoxia with or without fetal creatine supplementation on neuropathology in multiple brain regions.

View Article and Find Full Text PDF

Neurovascular coupling (NVC) leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity and metabolic demand. Impaired or immature NVC reported in the preterm brain, potentially reduces cerebral oxygenation following increased neural activity, predisposing to cerebral tissue hypoxia. Endogenous nitric oxide (NO) is a potent vasodilator and a major mediator of NVC and the cerebral haemodynamic response.

View Article and Find Full Text PDF

Integrating neurons into digital systems may enable performance infeasible with silicon alone. Here, we develop DishBrain, a system that harnesses the inherent adaptive computation of neurons in a structured environment. In vitro neural networks from human or rodent origins are integrated with in silico computing via a high-density multielectrode array.

View Article and Find Full Text PDF

Initiation of respiratory support in the delivery room increases the risk and severity of brain injury in preterm neonates through two major pathways: an inflammatory pathway and a haemodynamic pathway. The relative contribution of each pathway on preterm brain injury is not known. We aimed to assess the role of the inflammatory and haemodynamic pathway on ventilation-induced brain injury (VIBI) in the preterm lamb.

View Article and Find Full Text PDF

Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real-time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days' gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling.

View Article and Find Full Text PDF

Aim: Healthcare workers have directly provided care for COVID-19 patients, and have faced many additional sources leading to poor mental health. The study aimed to investigate the mental health problems and related factors among healthcare staff in Vietnam.

Methods: A descriptive cross-sectional mixed methods study, combining quantitative and qualitative research methods, was performed among 400 healthcare workers working at the National Hospital for Tropical Diseases and Ninh Binh General Hospital from the first day of treatment for COVID-19 patients to May 01, 2020.

View Article and Find Full Text PDF

Background: Neurovascular coupling leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity. Reduced cerebral functional responses may predispose to tissue hypoxia when neural activity is increased. Intrauterine inflammation, identified clinically as chorioamnionitis, is a major contributor to the neuropathology arising after preterm birth.

View Article and Find Full Text PDF

Near-term acute hypoxia in utero can result in significant fetal brain injury, with some brain regions more vulnerable than others. As mitochondrial dysfunction is an underlying feature of the injury cascade following hypoxia, this study is aimed at characterizing mitochondrial function at a region-specific level in the near-term fetal brain after a period of acute hypoxia. We hypothesized that regional differences in mitochondrial function would be evident, and that prophylactic creatine treatment would mitigate mitochondrial dysfunction following hypoxia; thereby reducing fetal brain injury.

View Article and Find Full Text PDF

Unlabelled: There is an important unmet need to develop interventions that improve outcomes of hypoxic-ischaemic encephalopathy (HIE). Creatine has emerged as a promising neuroprotective agent. Our objective was to systematically evaluate the preclinical animal studies that used creatine for perinatal neuroprotection, and to identify knowledge gaps that need to be addressed before creatine can be considered for pragmatic clinical trials for HIE.

View Article and Find Full Text PDF

Neurovascular coupling has been well-defined in the adult brain, but variable and inconsistent responses have been observed in the neonatal brain. The mechanisms that underlie functional haemodynamic responses in the developing brain are unknown. Synchrotron radiation (SR) microangiography enables high-resolution imaging of the cerebral vasculature.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of direct creatine infusion on fetal systemic metabolic and cardiovascular responses to mild acute in utero hypoxia. Pregnant ewes ( = 28) were surgically instrumented at 118 days gestation (dGa). A constant intravenous infusion of creatine (6 mg·kg·h) or isovolumetric saline (1.

View Article and Find Full Text PDF

Key Points: Brief episodes of severe fetal hypoxia can arise in late gestation as a result of interruption of normal umbilical blood flow Systemic parameters and blood chemistry indicate complete recovery within 1-2 hours, although the long-term effects on fetal brain functions are unknown Fetal sheep were subjected to umbilical cord occlusion (UCO) for 10 min at 131 days of gestation, and then monitored intensively until onset of labour or delivery (<145 days of gestation) Normal patterns of fetal behaviour, including breathing movements, episodes of high and low voltage electorcortical activity, eye movements and postural (neck) muscle activity, were disrupted for 3-10 days after the UCO Preterm labour and delivery occurred in a significant number of the pregnancies after UCO compared to the control (sham-UCO) cohort.

Abstract: Complications arising from antepartum events such as impaired umbilical blood flow can cause significant fetal hypoxia. These complications can be unpredictable, as well as difficult to detect, and thus we lack a detailed understanding of the (patho)physiological changes that occur between the antenatal in utero event and birth.

View Article and Find Full Text PDF

Background: In the adult brain, increases in neural activity lead to increases in local blood flow. However, in the preterm neonate, studies of cerebral functional haemodynamics have yielded inconsistent results, including negative responses suggesting decreased perfusion and localised tissue hypoxia, probably due to immature neurovascular coupling. Furthermore, the impact of vasoactive medications, such as dopamine and dobutamine used as inotropic therapies in preterm neonates, on cerebrovascular responses to somatosensory input is unknown.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu7udrupdper926vgamf1r59r1qdgrtis): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once