The degree to which non-human animals can be used to model Alzheimer's disease is a contentious issue, particularly as there is still widespread disagreement regarding the pathogenesis of this neurodegenerative dementia. The currently popular transgenic models are based on artificial expression of genes mutated in early onset forms of familial Alzheimer's disease (EOfAD). Uncertainty regarding the veracity of these models led us to focus on heterozygous, single mutations of endogenous genes (knock-in models) as these most closely resemble the genetic state of humans with EOfAD, and so incorporate the fewest assumptions regarding pathological mechanism.
View Article and Find Full Text PDFBackground: Iron trafficking and accumulation is associated with Alzheimer's disease (AD) pathogenesis. However, the role of iron dyshomeostasis in early disease stages is uncertain. Currently, gene expression changes indicative of iron dyshomeostasis are not well characterized, making it difficult to explore these in existing datasets.
View Article and Find Full Text PDFBackground: Early-onset familial Alzheimer's disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer's disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification.
View Article and Find Full Text PDFAgeing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD.
View Article and Find Full Text PDFBackground: The molecular changes involved in Alzheimer's disease (AD) progression remain unclear since we cannot easily access antemortem human brains. Some non-mammalian vertebrates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of the PSEN2 gene.
View Article and Find Full Text PDFTo prevent or ameliorate Alzheimer's disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD).
View Article and Find Full Text PDF