Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers.
View Article and Find Full Text PDFBackground: Metastasis is a process where only a small subset of cells is capable of successfully migrating to and propagating at secondary sites. TGF-β signalling is widely known for its role in cancer metastasis and is associated with cell migration in whole cell populations.
Findings: We extend these findings by investigating the role of TGF-β signalling in promoting migration and motility by imaging the signalling activity in live, individual MDA-MB-231 cancer cells utilizing a novel Smad3 Td-Tomato reporter adenovirus.
Transforming Growth Factor-β (TGF-β) and Epidermal Growth Factor (EGF) signaling pathways are both independently implicated as key regulators in tumor formation and progression. Here, we report that the tumor-associated overexpression of epidermal growth factor receptor (EGFR) desensitizes TGF-β signaling and its cytostatic regulation through specific and persistent Stat3 activation and Smad7 induction in vivo. In human tumor cell lines, reduction of TGF-β-mediated Smad2 phosphorylation, nuclear translocation and Smad3 target gene activation were observed when EGFR was overexpressed, but not in cells that expressed EGFR at normal levels.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) signalling controls many aspects of cell behaviour and is implicated as a key regulator in tumour formation and progression. However, evaluating levels of active TGF-β in culture medium or patient plasma and gaining definitive information regarding the activity of downstream substrates such as Sma- and Mad-related protein 3 (Smad3) in vivo with accuracy and sensitivity has been problematic. Therefore, to overcome these technical issues we have created a NIH3T3 cell line with stable pCAGA(12)-luc expression that can now be utilised to detect TGF-β activity with high sensitivity.
View Article and Find Full Text PDFThere is increasing evidence that more than 70% of cancers including pancreatic, breast and prostate cancers as well as neurofibromatosis (NF) are highly addicted to abnormal activation of the Ser/Thr kinase PAK1 for their growth. So far FK228 is the most potent among the HDAC (histone deacetylase) inhibitors that block the activation of both PAK1 and another kinase AKT, downstream of PI-3 kinase. However, FK228 is still in clinical trials (phase 2) for a variety of cancers (but not for NF as yet), and not available for most cancer/NF patients.
View Article and Find Full Text PDFThe latent transcription factor Stat3 is activated by gp130, the common receptor for the interleukin (IL)-6 cytokine family and other growth factor and cytokine receptors. Ligand-induced dimerization of gp130 leads to activation of the Stat1, Stat3 and Shp2-Ras-Erk signaling pathways. Here we assess genetically the contribution of exaggerated Stat3 activation to the phenotype of gp130 (Y757F/Y757F) mice, in which a knock-in mutation disrupts the negative feedback mechanism on gp130-dependent Stat signaling.
View Article and Find Full Text PDFOncogenic RAS mutants such as v-Ha-RAS induce cell cycling, in particular the G1 to S transition, by upregulating cyclin D1 and downregulating p27, an inhibitor for cyclin-dependent kinases (CDKs). PI-3 kinase appears to be involved in the regulation of both cyclin D1 and p27. In this report, using two distinct inhibitors specific for PAK1-3 (CEP-1347 and WR-PAK18), we present the first evidence indicating that the PIX/Rac/CDC42-dependent Ser/Thr kinases PAK1-3, acting downstream of PI-3 kinase and upstream of the Raf/MEK/ERKs kinase cascade, is essential for RAS-induced upregulation of cyclin D1, but not downregulation of p27.
View Article and Find Full Text PDFRho family GTPases (Rho, Rac and CDC42) share around 30% sequence identity with RAS family GTPases, and are essential for RAS-induced malignant transformation, i.e., aberrant serum/anchorage-independent growth and actin cytoskeleton-linked morphological changes.
View Article and Find Full Text PDFBackground: Oncogenic RAS mutants such as v-Ha-RAS activate members of Rac/CDC42-dependent kinases (PAKs) and appear to contribute to the development of more than 30% of all human cancers. PAK1 activation is essential for oncogenic RAS transformation, and several chemical compounds that inhibit Tyr kinases essential for the RAS-induced activation of PAK1 strongly suppress RAS transformation either in cell culture or in vivo (nude mice). Although we have developed a cell-permeable PAK-specific peptide inhibitor called WR-PA18, so far no chemical (metabolically stable) compound has been developed that directly inhibits PAK1 in a highly selective manner.
View Article and Find Full Text PDFEfficient T cell activation requires at least two signals, one mediated by the engagement of the TCR-CD3 complex and another one mediated by a costimulatory molecule. We recently showed that CD46, a complement regulatory receptor for C3b as well as a receptor for several pathogens, could act as a potent costimulatory molecule for human T cells, highly promoting T cell proliferation. Indeed, we show in this study that CD46/CD3 costimulation induces a synergistic activation of extracellular signal-related kinase mitogen-activated protein kinase.
View Article and Find Full Text PDFRecent efforts in our laboratories have resulted in a synthetic approach toward C2'-alkylated K252a analogues via extension of a K252a cyclofuranosylation strategy. The bis-indole-N-glycosidic coupling of 6-N-(3,4-dimethoxybenzyl)-staurosporinone (21) with a number of highly functionalized carbohydrates has given access to previously unattainable, biologically relevant analogues.
View Article and Find Full Text PDFDrugs that inhibit important protein-protein interactions are hard to find either by screening or rational design, at least so far. Most drugs on the market that target proteins today are therefore aimed at well-defined binding pockets in proteins. While computer-aided design is widely used to facilitate the drug discovery process for binding pockets, its application to the design of inhibitors that target the protein surface initially seems to be limited because of the increased complexity of the task.
View Article and Find Full Text PDFCohesin is an evolutionarily conserved multiprotein complex required to establish and maintain sister chromatid cohesion. Here, we report the cloning and initial characterization of the Drosophila homologue of the fission yeast rad21 cohesin subunit, called Drad21. The Drad21 coding region was localized to centromeric heterochromatin and encodes a 715 amino acid (aa) protein with 42% aa identity to vertebrate Rad21p-homologues, 25% with Scc1p/Mcd1p (S.
View Article and Find Full Text PDFA homolog of the bacterial cell division gene ftsZ was isolated from the alga Mallomonas splendens. The nuclear-encoded protein (MsFtsZ-mt) was closely related to FtsZs of the alpha-proteobacteria, possessed a mitochondrial targeting signal, and localized in a pattern consistent with a role in mitochondrial division. Although FtsZs are known to act in the division of chloroplasts, MsFtsZ-mt appears to be a mitochondrial FtsZ and may represent a mitochondrial division protein.
View Article and Find Full Text PDF