The utilization of agricultural by-products for the synthesis of hybrid nanomaterials represents an environmentally sustainable approach. This research aims to comprehensively investigate high-performance silver and copper nanoparticles hybrid materials based on carboxymethyl-modified cellulose / lignin derived from rice husks (CMC / CML-AgNPs and CMC / CML-CuONPs) and apply them for antimicrobial activities. CMC / CML was used to reduce Ag / Cu cations to the atomic level and then efficiently stabilize Ag / CuO nanoparticles, an eco-friendly method and sustainable development.
View Article and Find Full Text PDF() and () mainly spread through airborne fungal spores. An effective control to impede the dissemination of the spores of in the air affecting the environment and food was carried out. This study focuses on the sustainable rice husk-extracted lignin, nanolignin, lignin/n-lignin capped silver nanoparticles used for fungal growth inhibition.
View Article and Find Full Text PDFAntibacterial materials have been developed for a long time but bacteria adapt very quickly and become resistant to these materials. This study focuses on the synthesis of a hybrid material system from lignin and silver/silica nanoparticles (Lig@Ag/SiO NPs) which were used against bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S.
View Article and Find Full Text PDFRice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm.
View Article and Find Full Text PDF