Publications by authors named "Nhat Thien Nguyen"

Gac fruit ( Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, solid-liquid ratio, and extraction time.

View Article and Find Full Text PDF

The present study used CeO-CoO quantum dots@porous carbon/multiwalled carbon nanotube (CeO-CoO QDs@PC/MWCNT/GE) composites to modify graphite electrodes to fabricate high-sensitivity electrochemical sensors to detect the presence of oxytetracycline (OTC). The quantum dots were made from waste sugarcane bagasse. The electrochemical analysis demonstrated the superior electrochemical performance of CeO-CoO QDs@PC/MWCNT/GE, with a peak current density of 1.

View Article and Find Full Text PDF

This study involved novel-designed sludge biochar (SB) adsorbed for arsenic removal with lower operating costs and higher adsorption efficiency properties. Generally, biochar only relies on micropores for pollutant adsorption, but physical adsorption is not highly efficient for arsenic removal. Therefore, in order to improve the removal efficiency of arsenic by SB, diethylenetriamine (DETA) and FeCl were used in this study to modify the surface of SB by an immersion method.

View Article and Find Full Text PDF

Use of urban sludge, hospital sludge, and aquatic product sludge as a biochar adsorbent from wastewater treatment plants was investigated. Microwave carbonization was used to carbonize the sludge and then chemically activated at high temperatures to increase porosity and surface area. Effective of arsenic adsorption in water presents a newly designed metal doped to biochar.

View Article and Find Full Text PDF

Waste recycling and reuse will result in significant material and energy savings. In this research, usage of hospital sludge as a biochar adsorbent for wastewater treatment plants was investigated. Microwave carbonization was used to carbonize the sludge and then chemically activated with ZnCl₂to increase surface area and porosity.

View Article and Find Full Text PDF

Multilayer ZnO sheet-like flakes were synthesized by a simple method of precipitation and characterized by the techniques of X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The findings are proven that the SEM images show the overall morphology of a single sheet-like ZnO nanostructure made from uniformly thick nano-sheets. In an aqueous environment, the acoustic ability of the prepared material was assessed using ultrasound (US) radiation to degrade oxytetracycline (OTC) and norfloxacin (NF).

View Article and Find Full Text PDF

In the process of water treatment adsorption has been proved to be the best, because of its significant advantages. It is recognized that recycling and reuse of waste can result in significant savings in materials cost. In this research, the adsorption of organic and inorganic arsenic using sludge biochar (SBC) made from urban sludge were analyzed.

View Article and Find Full Text PDF

The utilization of sludge from Far Eastern Memorial hospital (New Taipei city, Taiwan) wastewater treatment plants as biochar adsorbent was investigated. The sludge was carbonized using microwave carbonization and then chemically activated at high temperatures by using ZnCl₂ to enhance porosity and surface area. A newly designed Zndoped amino-functionalized sludge biochar (Zn-SBC-DETA) presents effective As adsorption in water.

View Article and Find Full Text PDF

Hydrogen is considered as a promising energy source with its high energy yield, renewable, environment friendly properties. TiO2 modified with noble metal and nonmetal is widely used. In this study, Pt and graphene (GN) were used to modify TiO2 nanoparticles.

View Article and Find Full Text PDF

Recycling and reuse waste can result in significant savings in materials and energy. In this study, the adsorption of Cr(VI) was analyzed using activated carbon (AC) and biochar (BSC) made from sewage sludge. BSC materials were synthesized using zinc chloride as an activator coupled with carbonized sewage sludge.

View Article and Find Full Text PDF

The Pt and graphene (GN) were used to modify TiO2 nanoparticles. GN/TiO2, Pt-TiO2, Pt-GN/TiO2 were successfully synthesized by modified Hummers' method, alcohol thermal and photodeposition method, respectively. The characterizations of the synthesized catalysts by different characterization techniques, including N2 adsorption-desorption isotherm, fourier transform infrared spectroscopy (FTIR), inductively coupled plasma (ICP) technique and element analyzer (EA), respectively.

View Article and Find Full Text PDF

A large amount of calcium fluoride sludge is generated by the semiconductor industry every year. It also requires a high amount of fuel consumption using rotor concentrators and thermal oxidizers to treat VOCs. The mesoporous adsorbent prepared by calcium fluoride sludge was used for VOCs treatment.

View Article and Find Full Text PDF

It is recognized that recycling and reuse of waste can result in significant savings in materials and energy. In this research, the adsorption of methyl blue (MB) using waste rice husk ash (Rha) and mesoporous silica materials made from Rha (R-MCM) were analyzed. Mesoporous silica materials were synthesized using cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant and Rha as the silica source.

View Article and Find Full Text PDF

Large amount of calcium fluoride sludge was generated by semiconductor industry every year. It also needs high requirement of fuel consumption using rotor concentrator and thermal oxidizer to treat VOCs. The mesoporous catalyst prepared by calcium fluoride sludge was used for VOCs treatment in this study.

View Article and Find Full Text PDF

In this study, Polyacrylonitrile (PAN) fibers were prepared by a simple and effective electrospinning method. Subsequently, the PAN fibers were modified by diethylenetriamine (DETA) to produce aminated polyacrylonitrile (APAN) fibers. Finally, the adsorbability of copper ions on the surface of the fibers was examined in an aqueous solution.

View Article and Find Full Text PDF

Di-n-butyl phthalate (DBP) is a type of phthalate ester. In recent years, an increasing number of studies have examined the removal of DBP. In this study we use a composite material of N-Ti/13X/MCM-41, synthesized by nitrogen, molecular sieve 13X, tetrabutyl orthotitanate and tetraethyl orthosilicate as raw materials, CTAB as a structural template and tetrabutyl titanate and urea under hydrothermal conditions.

View Article and Find Full Text PDF

Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition.

View Article and Find Full Text PDF

Di-n-butyl phthalate (DBP) is a type of phthalate ester, and has been classified as an environmental endocrine disruptor. It causes serious harm to the environment and humans and it is found widely in air, waste water, rivers and soil. In recent years, an increasing number of studies examined the removal of DBP.

View Article and Find Full Text PDF