Publications by authors named "Nhat Quach"

P21 activated kinases (or group I PAKs) are serine/threonine kinases whose expression is altered in prostate and breast cancers. PAK-1 activity is inhibited by the small molecule "Inhibitor targeting PAK-1 activation-3" (IPA-3), which has selectivity for PAK-1 but is metabolically unstable. Secretory Group IIA phospholipase A (sPLA) expression correlates to increased metastasis and decreased survival in many cancers.

View Article and Find Full Text PDF

Exosomes are cell-secreted microvesicles that play important roles in epithelial ovarian cancer (EOC) progression, as they are constantly secreted into ascites fluids. While cells spontaneously release exosomes, alterations in intracellular calcium or extracellular pH can release additional exosomes. Yet, little is known about how these exosomes compare to those that are continuously released without stimulation and how they mediate cellular activities important in cancer progression.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are essential for the regenerative process; however, biological aging and environmental stress can induce senescence - an irreversible state of growth arrest - that not only affects the behavior of cells but also disrupts their ability to restore tissue integrity. While abnormal tissue properties, including increased extracellular matrix stiffness, are linked with the risk of developing breast cancer, the role and contribution of senescent MSCs to the disease progression to malignancy are not well understood. Here, we investigated senescence-associated biophysical changes in MSCs and how this influences cancer cell behavior in a 3D matrix interface model.

View Article and Find Full Text PDF

P21-activated kinase-1 (PAK-1) is a serine/threonine kinase involved in multiple signaling pathways that mediate cellular functions such as cytoskeletal motility, cell proliferation, and survival. PAK-1 expression is altered in various cancers, including prostate and breast. Our recent studies showed that prostate cancer cells expressing higher levels of PAK-1 were resistant to the cytotoxic effects of the PAK-1 inhibitor, inhibitor targeting PAK-1 activation-3 (IPA-3), compared to those with lower expression.

View Article and Find Full Text PDF

Recent studies suggest that glypican-1 (GPC-1) is a biomarker for prostate cancer, but there are few studies elucidating the role of GPC-1 in prostate cancer progression. We observed high expression of GPC-1 in more aggressive prostate cancer cell lines such as PC-3 and DU-145. While inhibition of GPC-1 expression in PC-3 cells decreased cell growth and migration in vitro, it surprisingly increased cell proliferation and migration in DU-145 cells, suggesting that the role of GPC-1 is cell type-dependent.

View Article and Find Full Text PDF

The bioactive lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have diverse effects on the developing nervous system and neural progenitors, but the molecular basis for their pleiotropic effects is poorly understood. We previously defined LPA and S1P signaling in proliferating human neural progenitor (hNP) cells, and the current study investigates their role in neuronal differentiation of these cells. Differentiation in the presence of LPA or S1P significantly enhanced cell survival and decreased expression of neuronal markers.

View Article and Find Full Text PDF

The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation.

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) cleave phospholipids preferentially at the sn-2 position, liberating free fatty acids and lysophospholipids. They are classified into six main groups based on size, location, function, substrate specificity and calcium requirement. These classes include secretory PLA2 (sPLA2), cytosolic (cPLA2), Ca(2+)-independent (iPLA2), platelet activating factor acetylhydrolases (PAF-AH), lysosomal PLA2 (LyPLA2) and adipose specific PLA2 (AdPLA2).

View Article and Find Full Text PDF

The progression of neoplastic malignancies is a complex process resulting not only from the accumulation of mutations within tumor cells, but also modulation of the tumor microenvironment. Recent advances have shown that the recruitment and subsequent heterotypic interactions of stromal cells--including fibroblasts and bone marrow-derived mesenchymal stem cells (MSCs)--are crucial for carcinogenesis. Though extensive work has been done analyzing the signals that recruit these cells, the governing mechanical properties have not been fully investigated.

View Article and Find Full Text PDF