Publications by authors named "Nham T Nguyen"

HSP27 is highly expressed in, and supports oncogene addiction of, many cancers. HSP27 phosphorylation is a limiting step for activation of this protein and a target for inhibition, but its highly disordered structure challenges rational structure-guided drug discovery. We performed multistep biochemical, structural, and computational experiments to define a spherical 24-monomer complex composed of 12 HSP27 dimers with a phosphorylation pocket flanked by serine residues between their N-terminal domains.

View Article and Find Full Text PDF

Cathepsin K (CatK) is the predominant mammalian bone-degrading protease and thus an ideal target for antiosteoporotic drug development. Rodent models of osteoporosis are preferred due to their close reflection of the human disease and their ease of handling, genetic manipulation and economic affordability. However, large differences in the potency of CatK inhibitors for the mouse/rat vs.

View Article and Find Full Text PDF

Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research.

View Article and Find Full Text PDF

Selective inhibitors of human pancreatic α-amylase (HPA) are an effective means of controlling blood sugar levels in the management of diabetes. A high-throughput screen of marine natural product extracts led to the identification of a potent ( = 10 pM) peptidic HPA inhibitor, helianthamide, from the Caribbean sea anemone Active helianthamide was produced in via secretion as a barnase fusion protein. X-ray crystallographic analysis of the complex of helianthamide with porcine pancreatic α-amylase revealed that helianthamide adopts a β-defensin fold and binds into and across the amylase active site, utilizing a contiguous YIYH inhibitory motif.

View Article and Find Full Text PDF

As part of a search for selective, mechanism-based covalent inhibitors of human pancreatic α-amylase we describe the chemoenzymatic synthesis of the disaccharide analog α-glucosyl epi-cyclophellitol, demonstrate its stoichiometric reaction with human pancreatic α-amylase and evaluate the time dependence of its inhibition. X-ray crystallographic analysis of the covalent derivative so formed confirms its reaction at the active site with formation of a covalent bond to the catalytic nucleophile D197. The structure illuminates the interactions with the active site and confirms OH4' on the nonreducing end sugar as a good site for attachment of fluorescent tags in generating probes for localization and quantitation of amylase in vivo.

View Article and Find Full Text PDF

The complex plant flavonol glycoside montbretin A is a potent (Ki = 8 nM) and specific inhibitor of human pancreatic α-amylase with potential as a therapeutic for diabetes and obesity. Controlled degradation studies on montbretin A, coupled with inhibition analyses, identified an essential high-affinity core structure comprising the myricetin and caffeic acid moieties linked via a disaccharide. X-ray structural analyses of the montbretin A-human α-amylase complex confirmed the importance of this core structure and revealed a novel mode of glycosidase inhibition wherein internal π-stacking interactions between the myricetin and caffeic acid organize their ring hydroxyls for optimal hydrogen bonding to the α-amylase catalytic residues D197 and E233.

View Article and Find Full Text PDF

Cathepsin K is the major collagenolytic protease in bone that facilitates physiological as well as pathological bone degradation. Despite its key role in bone remodeling and for being a highly sought-after drug target for the treatment of osteoporosis, the mechanism of collagen fiber degradation by cathepsin K remained elusive. Here, we report the structure of a collagenolytically active cathepsin K protein dimer.

View Article and Find Full Text PDF

The citrate synthase (CS) of Escherichia coli is an allosteric hexameric enzyme specifically inhibited by NADH. The crystal structure of wild type (WT) E. coli CS, determined by us previously, has no substrates bound, and part of the active site is in a highly mobile region that is shifted from the position needed for catalysis.

View Article and Find Full Text PDF

Autotransporters (ATs) are proteins that deliver effectors (the passenger domain) to the surface of Gram-negative bacteria by the type V secretion pathway. The passenger domain of BrkA, a Bordetella pertussis autotransporter mediating serum resistance and adherence, was cloned in a pET expression system and overexpressed in Escherichia coli. The gene product was correctly refolded, purified to homogeneity and crystallized.

View Article and Find Full Text PDF

The citrate synthase of Escherichia coli is an example of a Type II citrate synthase, a hexamer that is subject to allosteric inhibition by NADH. In previous crystallographic work, we defined the NADH binding sites, identifying nine amino acids whose side chains were proposed to make hydrogen bonds with the NADH molecule. Here, we describe the functional properties of nine sequence variants, in which these have been replaced by nonbonding residues.

View Article and Find Full Text PDF

Study of the hexameric and allosterically regulated citrate synthases (type II CS) provides a rare opportunity to gain not only an understanding of a novel allosteric mechanism but also insight into how such properties can evolve from an unregulated structural platform (the dimeric type I CS). To address both of these issues, we have determined the structure of the complex of NADH (a negative allosteric effector) with the F383A variant of type II Escherichia coli CS. This variant was chosen because its kinetics indicate it is primarily in the T or inactive allosteric conformation, the state that strongly binds to NADH.

View Article and Find Full Text PDF