Publications by authors named "Nguyen Van Quy"

In this study, crystalline spinel zinc ferrite nanoparticles (ZnFeO NPs) were successfully prepared and proposed as a high-performance electrode material for the construction of an electrochemical sensing platform for the detection of paracetamol (PCM). By modifying a screen-printed carbon electrode (SPE) with ZnFeO NPs, the electrochemical characteristics of the ZnFeO/SPE and the electrochemical oxidation of PCM were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV) methods. The calculated electrochemical kinetic parameters from these techniques including electrochemically active surface area (ECSA), peak-to-peak separation (Δ), charge transfer resistance (), standard heterogeneous electron-transfer rate constants (), electron transfer coefficient (), catalytic rate constant (), adsorption capacity (), and diffusion coefficient () proved that the as-synthesized ZnFeO NPs have rapid electron/mass transfer characteristics, intrinsic electrocatalytic activity, and facilitate the adsorption-diffusion of PCM molecules towards the modified electrode surface.

View Article and Find Full Text PDF

An obturator hernia is a rare pelvic hernia with high mortality. Early diagnosis and treatment are essential to reduce postoperative complications. The treatment of choice for obturator hernias is surgery.

View Article and Find Full Text PDF

Nitric oxide (NO) is an endogenous, multipotent biological signaling molecule that participates in several physiological processes. Recently, exogenous supplementation of tumor tissues with NO has emerged as a potential anticancer therapy. In particular, it induces synergistic effects with other conventional therapies (such as chemo-, radio-, and photodynamic therapies) by regulating the activity of P-glycoprotein, acting as a vascular relaxant to relieve tumor hypoxia, and participating in the metabolism of reactive oxygen species.

View Article and Find Full Text PDF

Wastewater containing an azo dye Orange G (OG) causes massive environmental pollution, thus it is critical to develop a highly effective, environmental-friendly, and reusable catalyst in peroxymonosulfate (PMS) activation for OG degradation. In this work, we successfully applied a magnetic MnFeO/α-MnO hybrid fabricated by a simple hydrothermal method for OG removal in water. The characteristics of the hybrid were investigated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller method, vibrating sample magnetometry, electron paramagnetic resonance, thermogravimetric analysis, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have shown great potential in disease diagnosis and treatment; however, their clinical applications remain challenging due to their unsatisfactory long-term stability and the lack of effective delivery strategies. In this study, we prepared human adipose stem cell-derived EV (hASC-EV)-loaded hyaluronic acid dissolving microneedles (EV@MN) to investigate the feasibility of EVs for their clinical applications. The biological activities of the EVs in this formulation were maintained for more than six months under mild storage conditions, especially at temperatures lower than 4 °C.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements in hydrogel technology, offering a versatile drug delivery platform exhibiting tissue-like properties with tunable drug loading and high residence time properties This review discusses the advantages and drawbacks of polymeric materials along with their modifications as well as their applications for fabricating hydrogels loaded with therapeutic agents (small molecule drugs, immunotherapeutic agents, and cells).

View Article and Find Full Text PDF

Hyaluronic acid-based hydrogels (Hyal-Gels) have the potential to reduce wrinkles by physically volumizing the skin. However, they have limited ability to stimulate collagen generation, thus warranting repeated treatments to maintain their volumizing effect. In this study, stem cell-derived extracellular vesicle (EV)-bearing Hyal-Gels (EVHyal-Gels) were prepared as a potential dermal filler, ameliorating the dermis microenvironment.

View Article and Find Full Text PDF

The temporal and quantitative control of the cargo release is a challenging issue in the application of hydrogels for cancer therapy. Here, we report hyaluronic acid hydrogel-based depot that provides ultrasound-triggered thermal elevation and on-demand cargo release. The hyaluronic acid hydrogel was developed by employing the gold cluster as a sonothermal crosslinker which was grown on the cargo to prevent its undesired leakage until ultrasound-induced dissociation.

View Article and Find Full Text PDF

Anti-death receptor 5 (DR5) antibody is a potential therapeutic agent for liver fibrosis because it exhibits anti-fibrotic effects by inducing the apoptosis of activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis. However, the clinical applications of anti-DR5 antibodies have been limited by their low agonistic activity against DR5. In this study, an anti-DR5 antibody-curcumin conjugate (DCC) was prepared to investigate its effect on the clearance of activated HSCs.

View Article and Find Full Text PDF

MoS-GO composites were fabricated by an ultrasonication method at room temperature. Raman spectra, emission scanning electron microscopy (SEM), and transmission electron microscopy (TEM) images were used to study the structural characteristics, morphologies, and sizes of the synthesized materials. An MoS-GO/SPE (screen-printed electrode) was prepared by a facile dropping method and acted as an effective electrochemical sensor toward clenbuterol (CLB) and 4-nitrophenol (4-NP) detection.

View Article and Find Full Text PDF

Allogeneic transplantation of mesenchymal stem cell-derived extracellular vesicles (EVs) offers great potential for treating liver fibrosis. However, owing to their intrinsic surface characteristics, bare EVs are non-specifically distributed in the liver tissue after systemic administration, leading to limited therapeutic efficacy. To target activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis, vitamin A-coupled small EVs (V-EVs) were prepared by incorporating vitamin A derivative into the membrane of bare EVs.

View Article and Find Full Text PDF

Kurz is widely used in folk medicine in Eastern Asia and is associated with various ethnopharmacological properties including hepatoprotective, antipyretic, analgesic, antidysenteric, and anthelmintic activities. Previous phytochemical investigations reported the presence of numerous triterpenes (mostly cycloartanes, ursanes, lupanes, and oleananes) along with dozens of flavonoids. However, the extracts of and isolated flavonoids have not been evaluated for their alpha-glucosidase inhibition.

View Article and Find Full Text PDF

Owing to their unique biological functions, hyaluronic acid (HA) and its derivatives have been explored extensively for biomedical applications such as tissue engineering, drug delivery, and molecular imaging. In particular, self-assembled HA nanoparticles (HA-NPs) have been used widely as target-specific and long-acting nanocarriers for the delivery of a wide range of therapeutic or diagnostic agents. Recently, it has been demonstrated that empty HA-NPs without bearing any therapeutic agent can be used therapeutically for the treatment of inflammatory diseases via modulating inflammatory responses.

View Article and Find Full Text PDF

Obesity, a major risk factor for type 2 diabetes and cardiovascular diseases, is characterized by an abnormal expansion of adipose tissue. Herein, we investigated the potential of hyaluronic acid nanoparticles (HA-NPs) as therapeutics to treat obesity-related diseases by assessing the in vitro and in vivo effects of HA-NPs on adipogenesis and lipogenesis. Treatment of 3T3-L1 preadipocytes with HA-NPs resulted in a dose-dependent suppression of adipogenesis and lipid accumulation, and decreased the expression of key adipogenic and lipogenic regulators.

View Article and Find Full Text PDF

Liver fibrosis is an excessive wound healing process that occurs in response to liver damage depending on underlying aetiologies. Currently, there are no effective therapies and FDA-approved therapeutics for the treatment of liver fibrosis except liver transplantation. Multipotent adipose-derived stem cells (ADSCs) have received significant attention as regenerative medicine for liver fibrosis owing to their advantages over stem cells with other origins.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MSNs) with stimuli-responsive gatekeepers have been extensively investigated for controlled drug delivery at the target sites. Herein, we developed reactive oxygen species (ROS)-responsive MSNs (R-MSNs), consisting of a gadolinium (Gd)-DOTA complex as the ROS-responsive gatekeeper and polyethylene glycol (PEG)-conjugated chlorin e6 as the ROS generator, for magnetic resonance (MR) imaging-guided photodynamic chemotherapy. Doxorubicin (DOX), chosen as an anticancer drug, was physically encapsulated into DOTA-conjugated MSNs, followed by chemical crosslinking via the addition of GdCl3.

View Article and Find Full Text PDF

Self-assembled hyaluronic acid nanoparticles (HA-NPs) have been extensively investigated for biomedical and pharmaceutical applications owing to their biocompatibility and receptor-binding properties. Here, we report that an empty HA-NP itself not bearing any drug has therapeutic effects on adipose tissue inflammation and insulin resistance. HA-NPs inhibited not only the receptor-mediated internalization of low-molecular-weight (LMW) free HA but also LMW free HA-induced pro-inflammatory gene expression in mouse primary bone marrow-derived macrophages (BMDMs) isolated from wild-type mice, but not in CD44-null (CD44-/-) BMDMs.

View Article and Find Full Text PDF

In this study, manganese ferrite-graphene oxide (MFO-GO) nanocomposites were prepared a co-precipitation reaction of Fe and Mn ions in a GO suspension. The effects of graphene oxide on the physicochemical characteristics, magnetic properties and adsorption activities of the MFO-GO nanocomposites were studied. Methylene blue (MB) and arsenic(v) were used in this study as model water pollutants.

View Article and Find Full Text PDF

In an attempt to develop the hypoxia-responsive nanoparticles for cancer therapy, a polymer conjugate, consisting of carboxymethyl dextran (CMD) and black hole quencher 3 (BHQ3), was prepared. The polymer conjugate can self-assemble into nanoparticles (CMD-BHQ3 NPs) under aqueous conditions. The anticancer drug, doxorubicin (DOX), was loaded in CMD-BHQ3 NPs to prepare DOX@CMD-BHQ3 NPs.

View Article and Find Full Text PDF

Stimuli-responsive micelles have emerged as the drug carrier for cancer therapy since they can exclusively release the drug via their structural changes in response to the specific stimuli of the target site. Herein, we developed the in situ diselenide-crosslinked micelles (DCMs), which are responsive to the abnormal ROS levels of tumoral region, as anticancer drug carriers. The DCMs were spontaneously derived from selenol-bearing triblock copolymers consisting of polyethylene glycol (PEG) and polypeptide derivatives.

View Article and Find Full Text PDF

We develop a simple method to synthesize nano tube or wire structure of tin-oxide for gas sensor application. It is realized by the rheotaxial growth and thermal oxidation (RGTO) of tin on porous single-wall carbon nanotubes (SWNTs) as a template. The morphology and chemical property of thus formed nanostructures are examined.

View Article and Find Full Text PDF