Publications by authors named "Nguyen Tri Nhan"

Aerosolized microorganisms have become an important factor in assessing air quality. To determine the characteristics of bacterial bioaerosols in air and rainwater, as well as calculate the recovery rate of bacteria after rains in Ho Chi Minh City, our study was performed using the SKC Biostage sampler for airborne bacteria and Plate Count Agar (PCA) medium for bacterial concentration. Subsequently, the study determined the bacterial community composition at the phylum and order levels using the 16S rRNA (16S metabarcoding) method.

View Article and Find Full Text PDF

Pediocin PA-1 is a bacteriocin that shows strongly anti-microbial activity against some Gram-positive pathogens such as Listeria monocytogenes, Staphylococcus aureus, and Enterococcus faecalis. With the broad inhibitory spectrum as well as high-temperature stability, pediocin has a potential application in the food preservation and pharmaceutical industry. Pediocin has been studied to express in many heterologous expression systems such as Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris as a free peptide.

View Article and Find Full Text PDF

The crystal structure of metagenome-derived LC9-RNase H1 was determined. The structure-based mutational analyses indicated that the active site motif of LC9-RNase H1 is altered from DEDD to DEDN. In this motif, the location of the second glutamate residue is moved from αA-helix to β1-strand immediately next to the first aspartate residue, as in the active site of RNase H2.

View Article and Find Full Text PDF

LC11-RNase H1 is a Sulfolobus tokodaii RNase H1 (Sto-RNase H1) homologue isolated by metagenomic approach. In this study, the crystal structure of LC11-RNase H1 in complex with an RNA/DNA substrate was determined. Unlike Bacillus halodurans RNase H1 without hybrid binding domain (HBD) (Bh-RNase HC) and human RNase H1 without HBD (Hs-RNase HC), LC11-RNase H1 interacts with four non-consecutive 2'-OH groups of the RNA strand.

View Article and Find Full Text PDF

Metagenome-derived LC11-RNase H1 is a homolog of Sulfolobus tokodaii RNase H1 (Sto-RNase H1). It lacks a C-terminal tail, which is responsible for hyperstabilization of Sto-RNase H1. Sto-RNase H1 is characterized by its ability to cleave not only an RNA/DNA hybrid but also a double-stranded RNA (dsRNA).

View Article and Find Full Text PDF