Publications by authors named "Nguyen Thu Phuong"

Article Synopsis
  • The study presents MinSnore, a deep learning model designed for real-time detection and reduction of snoring, optimized for low-powered devices like Raspberry Pi.
  • It utilizes a hybrid architecture combining MobileViTV3 blocks and Dynamic MobileNetV3, incorporating CNNs and transformers for effective feature extraction while maintaining low computational demands.
  • MinSnore achieved high performance metrics, including 96.37% accuracy and a notable reduction in snoring duration in real-world tests, highlighting its potential to improve sleep health economically and efficiently.
View Article and Find Full Text PDF

Cost-effective CO adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO adsorption capacity.

View Article and Find Full Text PDF

CuCoFe-LDO/BCD was successfully synthesized from CuCoFe-LDH and biochar derived from durian shell (BCD). Ciprofloxacin (CFX) degraded more than 95% mainly by O and O in CuCoFe-LDO/BCD(2/1)/PMS system within 10 min with a rate constant of 0.255 min, which was 14.

View Article and Find Full Text PDF

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress.

View Article and Find Full Text PDF

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits.

View Article and Find Full Text PDF

Background: The study of plant photosynthesis is essential for productivity and yield. Thanks to the development of high-throughput phenotyping (HTP) facilities, based on chlorophyll fluorescence imaging, photosynthetic traits can be measured in a reliable, reproducible and efficient manner. In most state-of-the-art HTP platforms, these traits are automatedly analyzed at individual plant level, but information at leaf level is often restricted by the use of manual annotation.

View Article and Find Full Text PDF

In this paper, green nanocomposites based on biomass and superparamagnetic nanoparticles were synthesized and used as adsorbents to remove methylene blue (MB) from water with magnetic separation. The adsorbents were synthesized through the wet co-precipitation technique, in which iron-oxide nanoparticles coated the cores based on coffee, cellulose, and red volcanic algae waste. The procedure resulted in materials that could be easily separated from aqueous solutions with magnets.

View Article and Find Full Text PDF

Prediction of growth-related complex traits is highly important for crop breeding. Photosynthesis efficiency and biomass are direct indicators of overall plant performance and therefore even minor improvements in these traits can result in significant breeding gains. Crop breeding for complex traits has been revolutionized by technological developments in genomics and phenomics.

View Article and Find Full Text PDF

The tribe Aethionemeae is sister to all other crucifers, making it a crucial group for unraveling genome evolution and phylogenetic relationships within the crown group Brassicaceae. In this study, we extend the analysis of Brassicaceae genomic blocks (GBs) to whereby we identified unique block boundaries shared only with the tribe Arabideae. This was achieved using bioinformatic methods to analyze synteny between the recently updated genome sequence of and other high-quality Brassicaceae genome sequences.

View Article and Find Full Text PDF

The genus is a sister-group to the core-group of the Brassicaceae family that includes and the Brassica crops. Thus, is phylogenetically well-placed for the investigation and understanding of genome and trait evolution across the family. We aimed to improve the quality of the reference genome draft version of the annual species Second, we constructed the first genetic map.

View Article and Find Full Text PDF

Silica/polypyrrole nanocomposites without dopant (SiO2/PPy) and with oxalate dopant (SiO2/PPyOx) were synthesized using polymerization of pyrrole in the presence of nano SiO2. Synthesized SiO2/PPy and SiO2/PPyOx were characterized by FTIR, SEM, TEM and EDX and their electrical conductivities were determined by CV method through the two-point-electrode without electrolyte. The corrosion protection performance of polyvinylbutyral (PVB) coatings containing SiO2/PPyOx was evaluated and compared with that of pure PVB coatings and of PVB coatings containing SiO2/PPy by electrochemical impedance spectroscopy and adhesion measurement.

View Article and Find Full Text PDF

The biochemical defense of plants can change during their life-cycle and impact herbivore feeding and plant fitness. The annual species is part of the sister clade to all other Brassicaceae. Hence, it holds a phylogenetically important position for studying crucifer trait evolution.

View Article and Find Full Text PDF

Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness.

View Article and Find Full Text PDF

The deposition of TiN on stainless steel substrates may improve the stability and compatibility of this material with bone, which may be advantageously exploited for the elaboration of advanced pros- thetic devices. In this work, TiN-coated 316LSS (by way of DC magnetron sputtering) was used as a starting material for investigating the electrochemical post-deposition of hydroxyapatite (HAp) which has a composition close to that of bone. Electrodeposition was carried out starting from an aqueous medium containing solubilized Ca(NO3)2 and NH4H2PO4 in the presence of H2O2.

View Article and Find Full Text PDF

We report on the fabrication and the electrochemical behavior of TiN film on the 316L stainless steel (316LSS) material in simulated body fluid (SBF) solution for implant application. The characterization results indicate that the coated TiN is completely crystalline with (111) crystal orientation. Electrochemical results of 316LSS and TiN/316LSS material after 21 days of immersion in SBF show that the durability of the TiN/316LSS is much higher than that of 316LSS, which registers a very low corrosion current density (about tens of nA cm(-2)).

View Article and Find Full Text PDF

Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements).

View Article and Find Full Text PDF

Dormancy is a state of metabolic arrest that facilitates the survival of organisms during environmental conditions incompatible with their regular course of life. Many organisms have deep dormant stages to promote an extended life span (increased longevity). In contrast, plants have seed dormancy and seed longevity described as two traits.

View Article and Find Full Text PDF