Publications by authors named "Nguyen Thai Huynh"

It is widely recognised that orange peels contain a considerable quantity of phenolics, primarily in the form of glycosides. The process of fermentation holds potential as a viable method for extracting phenolic compounds and facilitating their biotransformation into novel metabolites. The aim of this study was to assess the enhanced release of phenolic compounds through the process of solid-state fermentation of orange peels using microorganisms.

View Article and Find Full Text PDF

The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role.

View Article and Find Full Text PDF

Rhizopus azygosporus Yuan et Jong (ATCC 48108), a starter culture for fermented soybean tempeh, produces β-glucosidases that cleave flavonoid glycosides into aglycones during fermentation. However, recent data suggest that fermentation of a flavonoid glycoside-rich extract with this strain did not result in the production of aglycones. Thus, in this paper, flavonoid metabolism of this strain was investigated.

View Article and Find Full Text PDF

This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used.

View Article and Find Full Text PDF

Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts.

View Article and Find Full Text PDF