Mol Ther Nucleic Acids
March 2025
Accurate quantification of intraoperative blood loss is crucial for enhancing patient safety and the success rate of surgeries. Traditional estimation techniques, mainly reliant on visual assessments, are prone to significant inaccuracies due to their subjective nature. This study introduces MDCare, an innovative deep learning-integrated system designed to substantially improve the precision of blood loss quantification using surgical sponges.
View Article and Find Full Text PDFObjectives: Pediatric elbow fractures are a common injury among children. Recent advancements in artificial intelligence (AI), particularly deep learning (DL), have shown promise in diagnosing these fractures. This study systematically evaluated the performance of DL models in detecting pediatric elbow fractures.
View Article and Find Full Text PDFThis study aims to apply a multi-modal approach of the deep learning method for survival prediction in patients with non-small-cell lung cancer (NSCLC) using CT-based radiomics. We utilized two public data sets from the Cancer Imaging Archive (TCIA) comprising NSCLC patients, 420 patients and 516 patients for Lung 1 training and Lung 2 testing, respectively. A 3D convolutional neural network (CNN) survival was applied to extract 256 deep-radiomics features for each patient from a CT scan.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2025
The convergence of artificial intelligence (AI) and genomics is redefining cancer drug discovery by facilitating the development of personalized and effective therapies. This review examines the transformative role of AI technologies, including deep learning and advanced data analytics, in accelerating key stages of the drug discovery process: target identification, drug design, clinical trial optimization, and drug response prediction. Cutting-edge tools such as DrugnomeAI and PandaOmics have made substantial contributions to therapeutic target identification, while AI's predictive capabilities are driving personalized treatment strategies.
View Article and Find Full Text PDFSNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach employing multiscan convolutional neural networks (CNNs) combined with position-specific scoring matrix (PSSM) profiles to accurately recognize SNARE proteins.
View Article and Find Full Text PDFProtein succinylation, a post-translational modification wherein a succinyl group (-CO-CH₂-CH₂-CO-) attaches to lysine residues, plays a critical regulatory role in cellular processes. Dysregulated succinylation has been implicated in the onset and progression of various diseases, including liver, cardiac, pulmonary, and neurological disorders. However, identifying succinylation sites through experimental methods is often labor-intensive, costly, and technically challenging.
View Article and Find Full Text PDFBiomolecules
December 2024
The rapid evolution of artificial intelligence (AI) is redefining biomedicine, placing itself at the forefront of groundbreaking discoveries in molecular biology, genomics, drug discovery, diagnostics, and beyond [...
View Article and Find Full Text PDFAccurate prediction of RNA modifications holds profound implications for elucidating RNA function and mechanism, with potential applications in drug development. Here, the RNA-ModX presents a highly precise predictive model designed to forecast post-transcriptional RNA modifications, complemented by a user-friendly web application tailored for seamless utilization by future researchers. To achieve exceptional accuracy, the RNA-ModX systematically explored a range of machine learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit, and Transformer-based architectures.
View Article and Find Full Text PDFDiabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs.
View Article and Find Full Text PDFBackground: The possible association between diabetes mellitus and dementia has raised concerns, given the observed coincidental occurrences.
Objective: This study aimed to develop a personalized predictive model, using artificial intelligence, to assess the 5-year and 10-year dementia risk among patients with type 2 diabetes mellitus (T2DM) who are prescribed antidiabetic medications.
Methods: This retrospective multicenter study used data from the Taipei Medical University Clinical Research Database, which comprises electronic medical records from 3 hospitals in Taiwan.
N-methylcytosine (4mC) is a modified form of cytosine found in DNA, contributing to epigenetic regulation. It exists in various genomes, including the Rosaceae family encompassing significant fruit crops like apples, cherries, and roses. Previous investigations have examined the distribution and functional implications of 4mC sites within the Rosaceae genome, focusing on their potential roles in gene expression regulation, environmental adaptation, and evolution.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
July 2024
Introduction: This review explores the transformative impact of machine learning (ML) on carcinogenicity prediction within drug development. It discusses the historical context and recent advancements, emphasizing the significance of ML methodologies in overcoming challenges related to data interpretation, ethical considerations, and regulatory acceptance.
Areas Covered: The review comprehensively examines the integration of ML, deep learning, and diverse artificial intelligence (AI) approaches in various aspects of drug development safety assessments.
In current genomic research, the widely used methods for predicting antimicrobial resistance (AMR) often rely on prior knowledge of known AMR genes or reference genomes. However, these methods have limitations, potentially resulting in imprecise predictions owing to incomplete coverage of AMR mechanisms and genetic variations. To overcome these limitations, we propose a pan-genome-based machine learning approach to advance our understanding of AMR gene repertoires and uncover possible feature sets for precise AMR classification.
View Article and Find Full Text PDFRecurrences are frequent in nasopharyngeal carcinoma (NPC) despite high remission rates with treatment, leading to considerable morbidity. This study aimed to develop a prediction model for NPC survival by harnessing both pre- and post-treatment magnetic resonance imaging (MRI) radiomics in conjunction with clinical data, focusing on 3-year progression-free survival (PFS) as the primary outcome. Our comprehensive approach involved retrospective clinical and MRI data collection of 276 eligible NPC patients from three independent hospitals (180 in the training cohort, 46 in the validation cohort, and 50 in the external cohort) who underwent MRI scans twice, once within 2 months prior to treatment and once within 10 months after treatment.
View Article and Find Full Text PDFAccurately predicting tumor T-cell antigen (TTCA) sequences is a crucial task in the development of cancer vaccines and immunotherapies. TTCAs derived from tumor cells, are presented to immune cells (T cells) through major histocompatibility complex (MHC), via the recognition of specific portions of their structure known as epitopes. More specifically, MHC class I introduces TTCAs to T-cell receptors (TCR) which are located on the surface of CD8+ T cells.
View Article and Find Full Text PDFThe role of the IFI6 gene has been described in several cancers, but its involvement in esophageal cancer (ESCA) remains unclear. This study aimed to identify novel prognostic indicators for ESCA-targeted therapy by investigating IFI6's expression, epigenetic mechanisms, and signaling activities. We utilized public data from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) to analyze IFI6's expression, clinical characteristics, gene function, pathways, and correlation with different immune cells in ESCA.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
February 2024
Nowadays, information technology (IT) has been holding a significant role in daily life worldwide. The trajectory of data science and bioinformatics promises pioneering personalized therapies, reshaping medical landscapes and patient care. For RNA therapy to reach more patients, a comprehensive understanding of the application of data science and bioinformatics to this therapy is essential.
View Article and Find Full Text PDF