Publications by authors named "Nguyen Huy Thuan"

Currently, numerous glycosides have been synthesized and used in clinical applications, neutraceuticals, cosmetics, and food processing. Structurally, a glycoside is composed of aglycone attaching to one or several sugar moieties so-called glycone. It is found that biochemical or biopharmaceutical properties of glycoside are mainly determined by its sugar part and thereby alternation of this glycone resulting in novel structure and characteristics as well.

View Article and Find Full Text PDF

Genkwanin has various significant roles in nutrition, biomedicine, and pharmaceutical biology. Previously, this compound was chiefly produced by plant-originated extraction or chemical synthesis. However, due to increasing concern and demand for safe food and environmental issues, the biotechnological production of genkwanin and other bioactive compounds based on safe, cheap, and renewable substrates has gained much interest.

View Article and Find Full Text PDF

Eriodictyol (ED) is a flavonoid in the flavanones subclass. It is abundantly present in a wide range of medicinal plants, citrus fruits, and vegetables. In addition, ED owns numerous importantly medicinal bioactivities such as inhibition of proliferation, metastasis and induction of apoptosis in glioma cells or inhibition of glioblastoma migration, and invasion.

View Article and Find Full Text PDF

Micro-organisms have often been used to produce bioactive compounds as antibiotics, antifungals, and anti-tumors, etc. due to their easy and applicable culture, genetic manipulation, and extraction, etc. Mainly, microbial mono-cultures have been applied to produce value-added compounds and gotten numerous valuable results.

View Article and Find Full Text PDF

Unlabelled: The aim of the present study is to provide a scientific rationale for the folklore usage of (L.) Hoffm. in treating tuberculosis (Tb).

View Article and Find Full Text PDF

Taxifolin (dihydroquercetin) and its derivatives are medicinally important flavanonols with a wide distribution in plants. These compounds have been isolated from various plants, such as milk thistle, onions, french maritime, and tamarind. In general, they are commercially generated in semisynthetic forms.

View Article and Find Full Text PDF

, are only Gram-negative bacteria with the capacity of oxygenic photosynthesis, so termed as "Cyanophyta" or "blue-green algae." Their habitat is ubiquitous, which includes the diverse environments, such as soil, water, rock and other organisms (symbiosis, commensalism, or parasitism, etc.,).

View Article and Find Full Text PDF

Using various chromatographic separations, three new acylated flavonoid glycosides, namely barringosides G-I (-), were isolated from the water-soluble extract of branches and leaves. The structure elucidation was performed by extensive analysis of the 1D and 2D NMR and HR-QTOF-MS data. Of the isolated compounds, barringoside I () showed moderate inhibitory effects on LPS-induced NO production in RAW264.

View Article and Find Full Text PDF

Background: A promoter that drives high-level, long-term expression of the target gene under substrate limited growth conditions in the absence of an artificial inducer would facilitate the efficient production of heterologous proteins at low cost. A novel phosphate-regulated expression system was constructed using the promoter of the phytase encoding gene phyL from Bacillus licheniformis for the overexpression of proteins in this industrially relevant host.

Results: It is shown that the phyL promoter enables a strong overexpression of the heterologous genes amyE and xynA in B.

View Article and Find Full Text PDF

In bio-based fermentation, the overall bioprocess efficiency is significantly affected by the metabolic burden associated with the expression of complete biosynthetic pathway as well as precursor and cofactor generating enzymes into a single microbial cell. To attenuate such burden by compartmentalizing the enzyme expression, recently synthetic biologists have used coculture or poly-culture techniques for biomolecules synthesis. In this paper, coculture system of two metabolically engineered Escherichia coli populations were employed which comprises upstream module expressing two enzymes converting para-coumaric acid into resveratrol and the downstream module expressing glucosyltransferase to convert the resveratrol into its glucosidated forms; polydatin and resveratroloside.

View Article and Find Full Text PDF

Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region.

View Article and Find Full Text PDF

Microbial cells have extensively been utilized to produce value-added bioactive compounds. Based on advancement in protein engineering, DNA recombinant technology, genome engineering, and metabolic remodeling, the microbes can be re-engineered to produce industrially and medicinally important platform chemicals. The emergence of co-culture system which reduces the metabolic burden and allows parallel optimization of the engineered pathway in a modular fashion restricting the formation of undesired byproducts has become an alternative way to synthesize and produce bioactive compounds.

View Article and Find Full Text PDF

Background: Umbelliferone, also known as 7-hydroxycoumarin, is a phenolic metabolite found in many familiar plants. Its derivatives have been shown to have various pharmacological and chemo-preventive effects on human health. A uridine diphosphate glycosyltransferase YjiC from DSM 13, a cytochrome P450BM3 (CYP450 BM3) variant namely mutant 13 (M13) from , and an -methyltransferase from (SaOMT2) were used for modifications of umbelliferone.

View Article and Find Full Text PDF

Saccharopolyspora spp. are aerobic, Gram-positive, non-acid-fast, and non-motile actinomycetes. Various species of the genus Saccharopolyspora have been reported with an ability to produce various bioactive compounds for pharmaceutical and agricultural uses.

View Article and Find Full Text PDF

Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in genetically-engineered Escherichia coli BL21(DE3).

View Article and Find Full Text PDF

The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032.

View Article and Find Full Text PDF

Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this.

View Article and Find Full Text PDF

Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent.

View Article and Find Full Text PDF

Isoflavonoid representatives such as genistein and daidzein are highly potent anticancer, antibacterial, and antioxidant agents. It have been demonstrated that methylation of flavonoids enhanced the transporting ability, which lead to facilitated absorption and greatly increased bioavailability. In this paper, genetically engineered Escherichia coli was reconstructed by harboring E.

View Article and Find Full Text PDF

Avermectins (AVMs), produced by Streptomyces avermitilis MA-4680 (or ATCC 31267, NRRL 8165, NCBIM 12804), are 16-member macrocylic lactones that play very important functions as bactericidal and antiparasitic agents against nematodes and anthropods, as well as Mycobacterium tuberculosis H37Rv. Since its discovery in 1975, use of AVM has been widely spreading around the globe. To date, the whole genome sequence of S.

View Article and Find Full Text PDF

Myricetin is an important flavonol whose medically important properties include activities as an antioxidant, anticarcinogen, and antimutagen. The solubility, stability, and other biological properties of the compounds can be enhanced by conjugating aglycon with sugar moieties. The type of sugar moiety also plays a significant role in the biological and physical properties of the natural product glycosides.

View Article and Find Full Text PDF

Glycosylation is one of the most important post-modification processes of small molecules and enables the parent molecule to have increased solubility, stability, and bioactivity. Enzyme-based glycosylation has achieved significant progress due to advances in protein engineering, DNA recombinant techniques, exploitation of biosynthetic gene clusters of natural products, and computer-based modeling programs. Our report summarizes glycosylation data that have been published within the past five years to provide an overall review of current progress.

View Article and Find Full Text PDF

A sterol glucosyltransferase-encoded gene was isolated from Salinispora tropica CNB-440, a marine, sediment-dwelling, Gram positive bacterium that produces the potent anticancer compound, salinosporamide A. The full-length gene consists of 1284 nucleotides and encodes 427 amino acids with a calculated mass of 45.65kDa.

View Article and Find Full Text PDF