Circulating tumor cell separation has been the focus of numerous studies owing to its importance in the diagnosis, prognosis, and therapy of cancer. This study reports a highly efficient microfluidic device that integrates a specialized dielectrophoresis configuration, namely the facing-electrode configuration dielectrophoresis (FEC-DEP) structure, to isolate circulating tumor cells (CTCs) from various blood components, including red blood cells, white blood cells, and platelets. The FEC-DEP design features a bottom-slanted electrode array positioned parallel to a basic rectangular top electrode.
View Article and Find Full Text PDFDental caries on the crown's surface is caused by the interaction of bacteria and carbohydrates, which then gradually alter the tooth's structure. In addition, calculus is the root of periodontal disease. Optical coherence tomography (OCT) has been considered to be a promising tool for identifying dental caries; however, diagnosing dental caries in the early stage still remains challenging.
View Article and Find Full Text PDFIntroduction: Artificial Intelligence (AI) and machine learning (ML) are used extensively in HICs to detect and control antibiotic resistance (AMR) in laboratories and clinical institutions. ML is designed to predict outcome variables using an algorithm to enable "machines" to learn the "rules" from the data. ML is increasingly being applied in intensive care units to identify AMR and to assist empiric antibiotic therapy.
View Article and Find Full Text PDFIn this study, we demonstrated the feasibility of using a handheld optical coherence tomography (OCT) for visualizations of the microstructural and microvascular features of various oral mucosal types. To scan arbitrary locations of the oral mucosa, a scanning probe was developed, composed of a probe body fabricated by a 3D printer, miniaturized two-axis galvanometer, relay lenses, and reflective prism. With a 3D printing technique, the probe weight and the system volume were greatly reduced, enabling the effective improvement of imaging artifacts from unconscious motion and system complexity.
View Article and Find Full Text PDF