For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature.
View Article and Find Full Text PDFWe have demonstrated the preparation of white-emissive conjugated polymer nanoparticles wrapped with graphene oxide (GO) nanosheets. Highly stable, GO-wrapped, poly(9,9-di-n-octylfluorenyl-2,7-diyl) nanoparticles (GO-PFO NPs) with diameters in the range 30-150 nm were successfully obtained by utilizing the GO nanosheets as an interface stabilizer in an emulsification process. The synthesized GO-PFO NPs exhibited unique white-emitting photoluminescence with a characteristic green-emissive broad band above 500 nm, which was distinct from the photoluminescent behavior of PFO NPs without GO.
View Article and Find Full Text PDF