Urease and nitrification inhibitors can reduce ammonia and greenhouse gas emissions from fertilizers and manure but their effectiveness depends on the conditions under which they are used. Consequently, it is essential for the credibility of emission reductions reported in regulatory emission inventories that their effectiveness is assessed under real-world conditions and not just in the laboratory. Here, we specify the criteria we consider necessary before the effects of inhibitors are included in regulatory emission inventories.
View Article and Find Full Text PDFContext Or Problem: Most of the research evaluating rice varieties, a major global staple food, for greenhouse gas (GHG) mitigation has been conducted under continuous flooding. However, intermittent irrigation practices are expanding across the globe to address water shortages, which could alter emissions of methane (CH) compared to nitrous oxide (NO) for reducing overall global warming potential (GWP). To develop climate-smart rice production systems, it is critical to identify rice varieties that simultaneously reduce CH and NO emissions while maintaining crop productivity under intermittent irrigation.
View Article and Find Full Text PDFInadequate and imbalanced fertilizer application is a significant barrier to achieving higher maize yields in Nigeria's Middle Belt. This study hypothesized that optimizing fertilizer types and application rates, particularly through split applications of straight fertilizers, can significantly enhance maize yield and nutrient use efficiency compared to conventional NPK blends and farmer's practices. This experiment evaluated the effects of optimizing types and amounts of fertilizer on maize growth and yield, soil characteristics, and nutrient use efficiencies in the mid-belt region of Nigeria.
View Article and Find Full Text PDFSimulation models represent a low-cost approach to evaluating agricultural systems. In the current study, the precision and accuracy of the RUMINANT model to predict dry matter intake (DMI) and methane emissions from beef cattle fed tropical diets (characteristic of Colombia) was assessed. Feed intake (DMI) and methane emissions were measured in Brahman steers housed in polytunnels and fed six forage diets.
View Article and Find Full Text PDFThe OMICAS alliance is part of the Colombian government's Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program's kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships.
View Article and Find Full Text PDFGrazing-based production systems are a source of soil greenhouse gas (GHG) emissions triggered by excreta depositions. The adoption of forages (formerly known as ) with biological nitrification inhibition (BNI) capacity is a promising alternative to reduce nitrous oxide (NO) emissions from excreta patches. However, how this forage affects methane (CH) or carbon dioxide (CO) emissions from excreta patches remains unclear.
View Article and Find Full Text PDFIn Colombia, the beef production chain accounts for approximately 11.6 million cattle heads and annually produces 933 million kg of the beef carcass. There are no life cycle assessment (LCA) studies that have evaluated the environmental performance of Colombian beef systems.
View Article and Find Full Text PDFMethane (CH) emissions from enteric fermentation in cattle are an important source of greenhouse gases, accounting for about 40% of all agricultural emissions. Diet quality plays a fundamental role in determining the magnitude of CH emissions. Specifically, the inclusion of feeds with high digestibility and nutritional value have been reported to be a viable option for reducing CH emissions and, simultaneously, increase animal productivity.
View Article and Find Full Text PDFTrop Anim Health Prod
November 2020
The purpose of this study was to determine the in vitro fermentation and methane (CH) production in the grass Brachiaria brizantha (B) alone or when mixed with Gliricidia sepium forage (G) and/or Enterolobium cyclocarpum pods (E). Theses substrates were incubated in the following proportions: B100 (B100%), B85E15 (B85% + E15%), B85G15 (B85% + G15%), B85GE15 (B85% + G7.5% + E7.
View Article and Find Full Text PDFThere is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international '4p1000' initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky.
View Article and Find Full Text PDFA decline in pasture productivity is often associated with a reduction in vegetative cover. We hypothesize that nitrogen (N) in urine deposited by grazing cattle on degraded pastures, with low vegetative cover, is highly susceptible to losses. Here, we quantified the magnitude of urine-based nitrous oxide (NO) lost from soil under paired degraded (low vegetative cover) and non-degraded (adequate vegetative cover) pastures across five countries of the Latin America and the Caribbean (LAC) region and estimated urine-N emission factors.
View Article and Find Full Text PDFDemand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of 'GHG calculators'- simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America.
View Article and Find Full Text PDF