Publications by authors named "Ngoc-Loi Nguyen"

Article Synopsis
  • Benthic foraminifera are key marine and freshwater protists that help track environmental changes, with an extensive compilation of DNA sequences over 30 years.
  • The first curated dataset, BFR2, includes over 5000 sequences from the 18S rDNA gene, representing 279 species across 204 genera and 91 families.
  • Notably, 13% of these sequences may represent new species, and 45% have not been published before, contributing significantly to molecular foraminiferal research.
View Article and Find Full Text PDF

Environmental DNA (eDNA) preserved in marine sediments is increasingly being used to study past ecosystems. However, little is known about how accurately marine biodiversity is recorded in sediment eDNA archives, especially planktonic taxa. Here, we address this question by comparing eukaryotic diversity in 273 eDNA samples from three water depths and the surface sediments of 24 stations in the Nordic Seas.

View Article and Find Full Text PDF

Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored.

View Article and Find Full Text PDF

The widespread application of triazole fungicides (TFs) in agricultural practices can result in the considerable accumulation of active compound residues in the soil and a subsequent negative impact on the soil microbiota and crop health. In this study, we isolated three TF-degrading bacterial strains from contaminated agricultural soils and identified them as sp., sp.

View Article and Find Full Text PDF

Arctic marine biodiversity is undergoing rapid changes due to global warming and modifications of oceanic water masses circulation. These changes have been demonstrated in the case of mega- and macrofauna, but much less is known about their impact on the biodiversity of smaller size organisms, such as foraminifera that represent a main component of meiofauna in the Arctic. Several studies analyzed the distribution and diversity of Arctic foraminifera.

View Article and Find Full Text PDF

Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic-anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, '' strain HY1, which possesses metabolic capabilities never before found in any methanotroph.

View Article and Find Full Text PDF

A Gram-stain-negative, aerobic, non-motile and coccoid methanotroph, strain IM1, was isolated from hot spring soil. Cells of strain IM1 were catalase-negative, oxidase-positive and displayed a characteristic intracytoplasmic membrane arrangement of type I methanotrophs. The strain possessed genes encoding both membrane-bound and soluble methane monooxygenases and grew only on methane or methanol.

View Article and Find Full Text PDF

Soil acidification is accelerated by anthropogenic and agricultural activities, which could significantly affect global methane cycles. However, detailed knowledge of the genomic properties of methanotrophs adapted to acidic soils remains scarce. Using metagenomic approaches, we analyzed methane-utilizing communities enriched from acidic forest soils with pH 3 and 4, and recovered near-complete genomes of proteobacterial methanotrophs.

View Article and Find Full Text PDF

Methanotrophic bacteria are widespread and use methane as a sole carbon and energy source. They also play a crucial role in marine ecosystems by preventing the escape of methane into the atmosphere from diverse methane sources, such as methane seeps and hydrothermal vents. Despite their importance for methane carbon cycling, relatively few marine methanotrophic bacteria have been isolated and studied at the genomic level.

View Article and Find Full Text PDF

Aerobic methane oxidation is a key process in the global carbon cycle that acts as a major sink of methane. In this study, we describe a novel methanotroph designated EMGL16-1 that was isolated from a freshwater lake using the floating filter culture technique. Based on a phylogenetic analysis of 16S rRNA gene sequences, the isolate was found to be closely related to the genus Methylomonas in the family Methylococcaceae of the class Gammaproteobacteria with 94.

View Article and Find Full Text PDF