This study reports on the development of a new concept of on-line dual preconcentration stages for capillary electrophoresis (CE), in which two completely different preconcentration approaches can be realized in the same capillary. In the first stage, a dynamic magneto-extraction of target analytes on circulating magnetic beads is implemented within the capillary. In the second one, electrokinetic preconcentration of eluted analytes via large volume sample stacking is carried out to focus them into a nano band, prior to CE separation of enriched analytes.
View Article and Find Full Text PDFIn Cystic Fibrosis (CF), a rapid and standardized definition of chronic infection would allow a better management of Pseudomonas aeruginosa (Pa) infections, as well as a quick grouping of patients during clinical trials allowing better comparisons between studies. With this purpose, we compared the metabolic profiles of 44 in vitro cultures of Pa strains isolated from CF patients at different stages of infection in order to identify metabolites differentially synthetized according to these clinical stages. Compounds produced and secreted by each strain in the supernatant of a liquid culture were analysed by metabolomic approaches (UHPLC-DAD-ESI/QTOF, UV and UPLC-Orbitrap, MS).
View Article and Find Full Text PDFIt is reported in this study a new approach for modulation and even suppression of the electroosmotic flow (EOF) to achieve better electrokinetic preconcentration in capillary electrophoresis. This is based on the augmentation of the buffer's concentrations to very high levels (more than a thousand of mM) without recourse to any dynamic/permanent coating nor viscous gel. The use of large weakly charged molecules as background electrolyte's constituents allows working at extreme concentration ranges without penalty of high electric currents and Joule heating.
View Article and Find Full Text PDFAmong all neurodegenerative diseases, Alzheimer's Disease (AD) is the most prevalent worldwide, with a huge burden to the society and no efficient AD treatment so far. Continued efforts have been being made towards early and powerful diagnosis of AD, in the hope for a successful set of clinical trials and subsequently AD curative treatment. Towards this aim, detection and quantification of amyloid beta (Aβ) peptides in cerebrospinal fluid (CSF) and other biofluids, which are established and validated biomarkers for AD, have drawn attention of the scientific community and industry over almost two decades.
View Article and Find Full Text PDF