Skeletal muscle has an important role in whole body energy metabolism and various proteases are involved in skeletal muscle functions. We have previously identified the cysteine protease legumain in cultured human skeletal muscle cells. However, the potential role of legumain in regulation of energy metabolism remains unexplored.
View Article and Find Full Text PDFTransforming growth factor-beta 1 (TGF-β1) is a critical regulator of skeletal homeostasis and has diverse effects on osteoblastogenesis. To date, the mechanisms behind the intriguing inhibitory effect of TGF-β1 on osteoblast maturation are not fully understood. Here, we demonstrate a novel mechanism by which TGF-β1 modulates osteoblast maturation through the lysosomal protease legumain.
View Article and Find Full Text PDFLegumain is a lysosomal cysteine protease that has been implicated in an increasing amount of physiological and pathophysiological processes. However, the upstream mechanisms regulating the expression and function of legumain are not well understood. Here, we provide in vitro and in vivo data showing that vitamin D (VD) enhances legumain expression and function.
View Article and Find Full Text PDFThe interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter () , while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter were decreased.
View Article and Find Full Text PDFThe cysteine protease legumain (also known as asparaginyl endopeptidase or δ-secretase) is the only known mammalian asparaginyl endopeptidase and is primarily localized to the endolysosomal system, although it is also found extracellularly as a secreted protein. Legumain is involved in the regulation of diverse biological processes and tissue homeostasis, and in the pathogenesis of various malignant and nonmalignant diseases. In addition to its proteolytic activity that leads to the degradation or activation of different substrates, legumain has also been shown to have a nonproteolytic ligase function.
View Article and Find Full Text PDFBackground The cysteine protease legumain is increased in patients with atherosclerosis, but its causal role in atherogenesis and cardiovascular disease is still unclear. The aim of the study was to investigate the association of legumain with clinical outcome in a large cohort of patients with acute coronary syndrome. Methods and Results Serum levels of legumain were analyzed in 4883 patients with acute coronary syndrome from a substudy of the PLATO (Platelet Inhibition and Patient Outcomes) trial.
View Article and Find Full Text PDFThe cysteine protease legumain (asparaginyl endopeptidase, AEP) plays important roles in normal physiology but is also associated with several disorders, such as atherosclerosis, osteoporosis, cancer and neurodegenerative diseases. The functional roles of legumain have mainly been associated with the presence in lysosomes where legumain is active and mediates processing of multiple proteins, such as the conversion of single to double chain forms of cysteine cathepsins. However, in recent years, a number of studies point to extracellular roles of legumain in addition to the pivotal roles in the lysosomes.
View Article and Find Full Text PDFThe asparaginyl endopeptidase legumain and its inhibitor cystatin E/M are endogenously glycosylated. However, little is known about the nature of the carbohydrate groups and whether they affect the functions of these proteins. In this study both glycosylated and unglycosylated forms of legumain and cystatin E/M were studied.
View Article and Find Full Text PDFBackground And Aims: The cysteine protease legumain has been shown to be up-regulated in unstable atherosclerotic plaques. This study aims to further elucidate legumain in atherosclerosis, by examining legumain in plasma and carotid plaques from patients with carotid stenosis. Furthermore, legumain secretion from monocyte-derived macrophages treated with atherogenic lipids during macrophage polarization was studied.
View Article and Find Full Text PDFLegumain (AEP) is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP upregulation is linked to a number of diseases including inflammation, arteriosclerosis, and tumorigenesis. Thus this protease is an excellent molecular target for the development of new chemical markers.
View Article and Find Full Text PDF