Lithium-sulfur (Li-S) all-solid-state batteries (ASSBs) hold great promise for next-generation safe, durable and energy-dense battery technology. However, solid-state sulfur conversion reactions are kinetically sluggish and primarily constrained to the restricted three-phase boundary area of sulfur, carbon and solid electrolytes, making it challenging to achieve high sulfur utilization. Here we develop and implement mixed ionic-electronic conductors (MIECs) in sulfur cathodes to replace conventional solid electrolytes and invoke conversion reactions at sulfur-MIEC interfaces in addition to traditional three-phase boundaries.
View Article and Find Full Text PDFNon-specific phospholipase C (NPC) is an emerging family of lipolytic enzymes unique to plants and bacteria that play crucial roles in growth and stress responses. Among six copies of NPC isoforms found in Arabidopsis, the role of NPC3 remains elusive to date. Here, we show that NPC3 is a functional non-specific phospholipase C involved in tolerance to tunicamycin (TM)-induced endoplasmic reticulum (ER) stress through the synthesis of phosphocholine (PCho), a reaction product of NPC3.
View Article and Find Full Text PDFPeople with disabilities, including healthcare professionals, encounter many obstacles. The space sector is taking steps towards promoting equity, diversity, inclusion and accessibility, including developing the world’s first parastronaut program. Here, we propose that healthcare can learn from space in enhancing disability inclusion.
View Article and Find Full Text PDFPemphigus is a rare blistering autoimmune disease that damages the integumentary system and lowers the quality of life of patients. Interleukin-6 (IL-6) has been linked to the immunopathogenesis of pemphigus, according to recent research. Thus, the investigation purpose was to assess the function of IL-6 in the development and intensity of pemphigus disease.
View Article and Find Full Text PDFIt is estimated that millions of people around the world experience various types of tissue injuries every year. Regenerative medicine was born and developed for understanding and application with the aim of replacing affected organs or some cells. The research, manufacture, production, and distribution of RNA in cells have acted as a basic foundation for the development and testing of therapies and treatments that are widely applied in different fields of medicine.
View Article and Find Full Text PDFBlood disorders are defined as diseases related to the structure, function, and formation of blood cells. These diseases lead to increased years of life loss, reduced quality of life, and increased financial burden for social security systems around the world. Common blood disorder treatments such as using chemical drugs, organ transplants, or stem cell therapy have not yet approached the best goals, and treatment costs are also very high.
View Article and Find Full Text PDFFront Physiol
January 2024
Long-term space missions trigger a prolonged neuroendocrine stress response leading to immune system dysregulation evidenced by susceptibility to infections, viral reactivation, and skin irritations. However, due to existing technical constraints, real-time functional immune assessments are not currently available to crew inflight. The cytokine release assay (CRA) has been effectively employed to study the stimulated cytokine response of immune cells in whole blood albeit limited to pre- and post-flight sessions.
View Article and Find Full Text PDFRare-earth complexes are vital for separation chemistry and useful in many advanced applications including emission and energy upconversion. Here, 2D rare-earth clusters having net charges are formed on a metal surface, enabling investigations of their structural and electronic properties on a one-cluster-at-a-time basis using scanning tunneling microscopy. While these ionic complexes are highly mobile on the surface at ≈100 K, their mobility is greatly reduced at 5 K and reveals stable and self-limiting clusters.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation.
View Article and Find Full Text PDFAnion solvation in electrolytes can largely change the electrochemical performance of the electrolytes, yet has been rarely investigated. Herein, three anions of bis(trifluoromethanesulfonyl)imide (TFSI), bis(fluorosulfonyl)imide (FSI), and derived asymmetric (fluorosulfonyl)(trifluoro-methanesulfonyl)imide (FTFSI) are systematically examined in a weakly Li cation solvating solvent of bis(3-fluoropropyl)ether (BFPE). In-situ liquid secondary ion mass spectrometry demonstrates that FTFSI and FSI anions are associated with BFPE solvent, while weak TFSI /BFPE cluster signals are detected.
View Article and Find Full Text PDFPlasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation.
View Article and Find Full Text PDFThere is much interest in developing new energy storage systems to replace currently available ones that mainly work based on Li-ion intercalations. One attractive area is the Li-air battery for which most of the research has involved liquid electrolytes. There have been few studies on the use of a solid electrolyte in a Li-air battery.
View Article and Find Full Text PDFObjectives: This study aimed to evaluate the splatter contamination generated by rotary instrumentation and irrigation during simulations of surgical extractions. Specifically, comparisons of the splatters generated were made between traditional assistant-based irrigation and self-irrigating drills and between saline and hydrogen peroxide irrigant.
Materials And Methods: A fluorescein solution was infiltrated into the irrigation system of high-speed drills, and the surgical extraction procedures were performed on manikins with the typodont teeth.
The Pacific Ocean is among the five largest and deepest oceans in the world. The area of the Pacific Ocean covers about 28 % of the Earth's surface. This is the habitat of many marine species, and its diversity is recognized as a fundamental element of Pacific culture and heritage.
View Article and Find Full Text PDFIntroduction: Neuropathic pain is a debilitating condition resulting from various etiologies such as diabetes, multiple sclerosis, and infection, and is associated with decreased quality of life, poor health outcomes, and increased economic burden. However, epidemiological studies on neuropathic pain have been largely limited in Vietnam.
Methods: A cross-sectional study was conducted on adult Vietnamese industrial workers across three manufacturing plants.
Purpose Of Review: Platelet factor 4 (PF4, CXCL4), the most abundant α-granule platelet-specific chemokine, forms tetramers with an equatorial ring of high positive charge that bind to a wide range of polyanions, after which it changes conformation to expose antigenic epitopes. Antibodies directed against PF4 not only help to clear infection but can also lead to the development of thrombotic disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombocytopenia and thrombosis (VITT). This review will outline the different mechanisms through which PF4 engagement with polyanions combats infection but also contributes to the pathogenesis of inflammatory and thrombotic disease states.
View Article and Find Full Text PDFVariable temperature electron paramagnetic resonance (VT-EPR) was used to investigate the role of the environment and oxidation states of several coordinated Eu compounds. We find that while Eu(III) chelating complexes are diamagnetic, simple chemical reduction results in the formation of paramagnetic species. In agreement with the distorted symmetry of Eu molecular complexes investigated in this study, the EPR spectrum of reduced complexes showed axially symmetric signals ( = 2.
View Article and Find Full Text PDFBackground: Despite recent reductions in Vietnam, malaria transmission persists in some areas in forests and farmlands where a high density of Anopheles mosquitoes relative to other environments occurs. To inform effective malaria control measures, it is important to understand vector bionomics and the malaria transmission role of Anopheles spp. in the highland regions of Vietnam.
View Article and Find Full Text PDFThis paper seeks to develop an interpretable Machine Learning (ML) model for predicting the unconfined compressive strength (UCS) of cohesive soils stabilized with geopolymer at 28 days. Four models including Random Forest (RF), Artificial Neuron Network (ANN), Extreme Gradient Boosting (XGB), and Gradient Boosting (GB) are built. The database consists of 282 samples collected from the literature with three different types of cohesive soil stabilized with three geopolymer categories including Slag-based geopolymer cement, alkali-activated fly ash geopolymer and slag/fly ash-based geopolymer cement.
View Article and Find Full Text PDFBackground: Patients with Philadelphia-negative myeloproliferative neoplasms (MPNs) have a higher burden of cardiac calcifications compared to the general population. It is not known whether the JAK2V617F mutation is associated with increased cardiac calcification.
Aim: To investigate if a higher JAK2V617F variant allele frequency (VAF) is associated with severe coronary atherosclerosis and the presence of aortic valve calcification (AVC).
Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that can be isolated from bone marrow, adipose tissue, the umbilical cord, dental pulp, etc. These cells have unique properties that give them excellent therapeutic potential, including immunoregulation, immunomodulation, and tissue regeneration functions. MSC-based products are considered advanced therapy medicinal products (ATMPs) under European regulations (1394/2007); thus, they must be manufactured under good manufacturing practices and via effective manufacturing methods.
View Article and Find Full Text PDFThe chemical pathway for synthesizing covalent organic frameworks (COFs) involves a complex medley of reaction sequences over a rippling energy landscape that cannot be adequately described using existing theories. Even with the development of state-of-the-art experimental and computational tools, identifying primary mechanisms of nucleation and growth of COFs remains elusive. Other than empirically, little is known about how the catalyst composition and water activity affect the kinetics of the reaction pathway.
View Article and Find Full Text PDF